/****************************************************************************** * Filename: hw_crypto_h * Revised: 2018-05-14 12:24:52 +0200 (Mon, 14 May 2018) * Revision: 51990 * * Copyright (c) 2015 - 2017, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of the ORGANIZATION nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ #ifndef __HW_CRYPTO_H__ #define __HW_CRYPTO_H__ //***************************************************************************** // // This section defines the register offsets of // CRYPTO component // //***************************************************************************** // Channel 0 Control #define CRYPTO_O_DMACH0CTL 0x00000000 // Channel 0 External Address #define CRYPTO_O_DMACH0EXTADDR 0x00000004 // Channel 0 DMA Length #define CRYPTO_O_DMACH0LEN 0x0000000C // DMAC Status #define CRYPTO_O_DMASTAT 0x00000018 // DMAC Software Reset #define CRYPTO_O_DMASWRESET 0x0000001C // Channel 1 Control #define CRYPTO_O_DMACH1CTL 0x00000020 // Channel 1 External Address #define CRYPTO_O_DMACH1EXTADDR 0x00000024 // Channel 1 DMA Length #define CRYPTO_O_DMACH1LEN 0x0000002C // DMAC Master Run-time Parameters #define CRYPTO_O_DMABUSCFG 0x00000078 // DMAC Port Error Raw Status #define CRYPTO_O_DMAPORTERR 0x0000007C // DMAC Version #define CRYPTO_O_DMAHWVER 0x000000FC // Key Store Write Area #define CRYPTO_O_KEYWRITEAREA 0x00000400 // Key Store Written Area #define CRYPTO_O_KEYWRITTENAREA 0x00000404 // Key Store Size #define CRYPTO_O_KEYSIZE 0x00000408 // Key Store Read Area #define CRYPTO_O_KEYREADAREA 0x0000040C // AES_KEY2_0 / AES_GHASH_H_IN_0 #define CRYPTO_O_AESKEY20 0x00000500 // AES_KEY2_0 / AES_GHASH_H_IN_0 #define CRYPTO_O_AESKEY21 0x00000504 // AES_KEY2_0 / AES_GHASH_H_IN_0 #define CRYPTO_O_AESKEY22 0x00000508 // AES_KEY2_0 / AES_GHASH_H_IN_0 #define CRYPTO_O_AESKEY23 0x0000050C // AES_KEY3_0 / AES_KEY2_4 #define CRYPTO_O_AESKEY30 0x00000510 // AES_KEY3_0 / AES_KEY2_4 #define CRYPTO_O_AESKEY31 0x00000514 // AES_KEY3_0 / AES_KEY2_4 #define CRYPTO_O_AESKEY32 0x00000518 // AES_KEY3_0 / AES_KEY2_4 #define CRYPTO_O_AESKEY33 0x0000051C // AES initialization vector registers #define CRYPTO_O_AESIV0 0x00000540 // AES initialization vector registers #define CRYPTO_O_AESIV1 0x00000544 // AES initialization vector registers #define CRYPTO_O_AESIV2 0x00000548 // AES initialization vector registers #define CRYPTO_O_AESIV3 0x0000054C // AES Control #define CRYPTO_O_AESCTL 0x00000550 // AES Crypto Length 0 (LSW) #define CRYPTO_O_AESDATALEN0 0x00000554 // AES Crypto Length 1 (MSW) #define CRYPTO_O_AESDATALEN1 0x00000558 // AES Authentication Length #define CRYPTO_O_AESAUTHLEN 0x0000055C // Data Input/Output #define CRYPTO_O_AESDATAOUT0 0x00000560 // AES Data Input_Output 0 #define CRYPTO_O_AESDATAIN0 0x00000560 // Data Input/Output #define CRYPTO_O_AESDATAOUT1 0x00000564 // AES Data Input_Output 0 #define CRYPTO_O_AESDATAIN1 0x00000564 // Data Input/Output #define CRYPTO_O_AESDATAOUT2 0x00000568 // AES Data Input_Output 2 #define CRYPTO_O_AESDATAIN2 0x00000568 // Data Input/Output #define CRYPTO_O_AESDATAOUT3 0x0000056C // AES Data Input_Output 3 #define CRYPTO_O_AESDATAIN3 0x0000056C // AES Tag Out 0 #define CRYPTO_O_AESTAGOUT0 0x00000570 // AES Tag Out 0 #define CRYPTO_O_AESTAGOUT1 0x00000574 // AES Tag Out 0 #define CRYPTO_O_AESTAGOUT2 0x00000578 // AES Tag Out 0 #define CRYPTO_O_AESTAGOUT3 0x0000057C // HASH Data Input 1 #define CRYPTO_O_HASHDATAIN1 0x00000604 // HASH Data Input 2 #define CRYPTO_O_HASHDATAIN2 0x00000608 // HASH Data Input 3 #define CRYPTO_O_HASHDATAIN3 0x0000060C // HASH Data Input 4 #define CRYPTO_O_HASHDATAIN4 0x00000610 // HASH Data Input 5 #define CRYPTO_O_HASHDATAIN5 0x00000614 // HASH Data Input 6 #define CRYPTO_O_HASHDATAIN6 0x00000618 // HASH Data Input 7 #define CRYPTO_O_HASHDATAIN7 0x0000061C // HASH Data Input 8 #define CRYPTO_O_HASHDATAIN8 0x00000620 // HASH Data Input 9 #define CRYPTO_O_HASHDATAIN9 0x00000624 // HASH Data Input 10 #define CRYPTO_O_HASHDATAIN10 0x00000628 // HASH Data Input 11 #define CRYPTO_O_HASHDATAIN11 0x0000062C // HASH Data Input 12 #define CRYPTO_O_HASHDATAIN12 0x00000630 // HASH Data Input 13 #define CRYPTO_O_HASHDATAIN13 0x00000634 // HASH Data Input 14 #define CRYPTO_O_HASHDATAIN14 0x00000638 // HASH Data Input 15 #define CRYPTO_O_HASHDATAIN15 0x0000063C // HASH Data Input 16 #define CRYPTO_O_HASHDATAIN16 0x00000640 // HASH Data Input 17 #define CRYPTO_O_HASHDATAIN17 0x00000644 // HASH Data Input 18 #define CRYPTO_O_HASHDATAIN18 0x00000648 // HASH Data Input 19 #define CRYPTO_O_HASHDATAIN19 0x0000064C // HASH Data Input 20 #define CRYPTO_O_HASHDATAIN20 0x00000650 // HASH Data Input 21 #define CRYPTO_O_HASHDATAIN21 0x00000654 // HASH Data Input 22 #define CRYPTO_O_HASHDATAIN22 0x00000658 // HASH Data Input 23 #define CRYPTO_O_HASHDATAIN23 0x0000065C // HASH Data Input 24 #define CRYPTO_O_HASHDATAIN24 0x00000660 // HASH Data Input 25 #define CRYPTO_O_HASHDATAIN25 0x00000664 // HASH Data Input 26 #define CRYPTO_O_HASHDATAIN26 0x00000668 // HASH Data Input 27 #define CRYPTO_O_HASHDATAIN27 0x0000066C // HASH Data Input 28 #define CRYPTO_O_HASHDATAIN28 0x00000670 // HASH Data Input 29 #define CRYPTO_O_HASHDATAIN29 0x00000674 // HASH Data Input 30 #define CRYPTO_O_HASHDATAIN30 0x00000678 // HASH Data Input 31 #define CRYPTO_O_HASHDATAIN31 0x0000067C // HASH Input_Output Buffer Control #define CRYPTO_O_HASHIOBUFCTRL 0x00000680 // HASH Mode #define CRYPTO_O_HASHMODE 0x00000684 // HASH Input Length LSB #define CRYPTO_O_HASHINLENL 0x00000688 // HASH Input Length MSB #define CRYPTO_O_HASHINLENH 0x0000068C // HASH Digest A #define CRYPTO_O_HASHDIGESTA 0x000006C0 // HASH Digest B #define CRYPTO_O_HASHDIGESTB 0x000006C4 // HASH Digest C #define CRYPTO_O_HASHDIGESTC 0x000006C8 // HASH Digest D #define CRYPTO_O_HASHDIGESTD 0x000006CC // HASH Digest E #define CRYPTO_O_HASHDIGESTE 0x000006D0 // HASH Digest F #define CRYPTO_O_HASHDIGESTF 0x000006D4 // HASH Digest G #define CRYPTO_O_HASHDIGESTG 0x000006D8 // HASH Digest H #define CRYPTO_O_HASHDIGESTH 0x000006DC // HASH Digest I #define CRYPTO_O_HASHDIGESTI 0x000006E0 // HASH Digest J #define CRYPTO_O_HASHDIGESTJ 0x000006E4 // HASH Digest K #define CRYPTO_O_HASHDIGESTK 0x000006E8 // HASH Digest L #define CRYPTO_O_HASHDIGESTL 0x000006EC // HASH Digest M #define CRYPTO_O_HASHDIGESTM 0x000006F0 // HASH Digest N #define CRYPTO_O_HASHDIGESTN 0x000006F4 // HASH Digest 0 #define CRYPTO_O_HASHDIGESTO 0x000006F8 // HASH Digest P #define CRYPTO_O_HASHDIGESTP 0x000006FC // Algorithm Select #define CRYPTO_O_ALGSEL 0x00000700 // DMA Protection Control #define CRYPTO_O_DMAPROTCTL 0x00000704 // Software Reset #define CRYPTO_O_SWRESET 0x00000740 // Control Interrupt Configuration #define CRYPTO_O_IRQTYPE 0x00000780 // Control Interrupt Enable #define CRYPTO_O_IRQEN 0x00000784 // Control Interrupt Clear #define CRYPTO_O_IRQCLR 0x00000788 // Control Interrupt Set #define CRYPTO_O_IRQSET 0x0000078C // Control Interrupt Status #define CRYPTO_O_IRQSTAT 0x00000790 // Hardware Version #define CRYPTO_O_HWVER 0x000007FC //***************************************************************************** // // Register: CRYPTO_O_DMACH0CTL // //***************************************************************************** // Field: [1] PRIO // // Channel priority // 0: Low // 1: High // If both channels have the same priority, access of the channels to the // external port is arbitrated using the round robin scheme. If one channel has // a high priority and another one low, the channel with the high priority is // served first, in case of simultaneous access requests. #define CRYPTO_DMACH0CTL_PRIO 0x00000002 #define CRYPTO_DMACH0CTL_PRIO_BITN 1 #define CRYPTO_DMACH0CTL_PRIO_M 0x00000002 #define CRYPTO_DMACH0CTL_PRIO_S 1 // Field: [0] EN // // Channel enable // 0: Disabled // 1: Enable // Note: Disabling an active channel interrupts the DMA operation. The ongoing // block transfer completes, but no new transfers are requested. #define CRYPTO_DMACH0CTL_EN 0x00000001 #define CRYPTO_DMACH0CTL_EN_BITN 0 #define CRYPTO_DMACH0CTL_EN_M 0x00000001 #define CRYPTO_DMACH0CTL_EN_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH0EXTADDR // //***************************************************************************** // Field: [31:0] ADDR // // Channel external address value // When read during operation, it holds the last updated external address after // being sent to the master interface. Note: The crypto DMA copies out upto 3 // bytes until it hits a word boundary, thus the address need not be word // aligned. #define CRYPTO_DMACH0EXTADDR_ADDR_W 32 #define CRYPTO_DMACH0EXTADDR_ADDR_M 0xFFFFFFFF #define CRYPTO_DMACH0EXTADDR_ADDR_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH0LEN // //***************************************************************************** // Field: [15:0] DMALEN // // Channel DMA length in bytes // During configuration, this register contains the DMA transfer length in // bytes. During operation, it contains the last updated value of the DMA // transfer length after being sent to the master interface. // Note: Setting this register to a nonzero value starts the transfer if the // channel is enabled. Therefore, this register must be written last when // setting up a DMA channel. #define CRYPTO_DMACH0LEN_DMALEN_W 16 #define CRYPTO_DMACH0LEN_DMALEN_M 0x0000FFFF #define CRYPTO_DMACH0LEN_DMALEN_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMASTAT // //***************************************************************************** // Field: [17] PORT_ERR // // Reflects possible transfer errors on the AHB port. #define CRYPTO_DMASTAT_PORT_ERR 0x00020000 #define CRYPTO_DMASTAT_PORT_ERR_BITN 17 #define CRYPTO_DMASTAT_PORT_ERR_M 0x00020000 #define CRYPTO_DMASTAT_PORT_ERR_S 17 // Field: [1] CH1_ACT // // A value of 1 indicates that channel 1 is active (DMA transfer on-going). #define CRYPTO_DMASTAT_CH1_ACT 0x00000002 #define CRYPTO_DMASTAT_CH1_ACT_BITN 1 #define CRYPTO_DMASTAT_CH1_ACT_M 0x00000002 #define CRYPTO_DMASTAT_CH1_ACT_S 1 // Field: [0] CH0_ACT // // A value of 1 indicates that channel 0 is active (DMA transfer on-going). #define CRYPTO_DMASTAT_CH0_ACT 0x00000001 #define CRYPTO_DMASTAT_CH0_ACT_BITN 0 #define CRYPTO_DMASTAT_CH0_ACT_M 0x00000001 #define CRYPTO_DMASTAT_CH0_ACT_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMASWRESET // //***************************************************************************** // Field: [0] SWRES // // Software reset enable // 0 : Disabled // 1 : Enabled (self-cleared to 0) // Completion of the software reset must be checked through the DMASTAT #define CRYPTO_DMASWRESET_SWRES 0x00000001 #define CRYPTO_DMASWRESET_SWRES_BITN 0 #define CRYPTO_DMASWRESET_SWRES_M 0x00000001 #define CRYPTO_DMASWRESET_SWRES_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH1CTL // //***************************************************************************** // Field: [1] PRIO // // Channel priority // 0: Low // 1: High // If both channels have the same priority, access of the channels to the // external port is arbitrated using the round robin scheme. If one channel has // a high priority and another one low, the channel with the high priority is // served first, in case of simultaneous access requests. #define CRYPTO_DMACH1CTL_PRIO 0x00000002 #define CRYPTO_DMACH1CTL_PRIO_BITN 1 #define CRYPTO_DMACH1CTL_PRIO_M 0x00000002 #define CRYPTO_DMACH1CTL_PRIO_S 1 // Field: [0] EN // // Channel enable // 0: Disabled // 1: Enable // Note: Disabling an active channel interrupts the DMA operation. The ongoing // block transfer completes, but no new transfers are requested. #define CRYPTO_DMACH1CTL_EN 0x00000001 #define CRYPTO_DMACH1CTL_EN_BITN 0 #define CRYPTO_DMACH1CTL_EN_M 0x00000001 #define CRYPTO_DMACH1CTL_EN_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH1EXTADDR // //***************************************************************************** // Field: [31:0] ADDR // // Channel external address value. // When read during operation, it holds the last updated external address after // being sent to the master interface. Note: The crypto DMA copies out upto 3 // bytes until it hits a word boundary, thus the address need not be word // aligned. #define CRYPTO_DMACH1EXTADDR_ADDR_W 32 #define CRYPTO_DMACH1EXTADDR_ADDR_M 0xFFFFFFFF #define CRYPTO_DMACH1EXTADDR_ADDR_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH1LEN // //***************************************************************************** // Field: [15:0] DMALEN // // Channel DMA length in bytes. // During configuration, this register contains the DMA transfer length in // bytes. During operation, it contains the last updated value of the DMA // transfer length after being sent to the master interface. // Note: Setting this register to a nonzero value starts the transfer if the // channel is enabled. Therefore, this register must be written last when // setting up a DMA channel. #define CRYPTO_DMACH1LEN_DMALEN_W 16 #define CRYPTO_DMACH1LEN_DMALEN_M 0x0000FFFF #define CRYPTO_DMACH1LEN_DMALEN_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMABUSCFG // //***************************************************************************** // Field: [15:12] AHB_MST1_BURST_SIZE // // Maximum burst size that can be performed on the AHB bus // ENUMs: // 64_BYTE 64 bytes // 32_BYTE 32 bytes // 16_BYTE 16 bytes // 8_BYTE 8 bytes // 4_BYTE 4 bytes #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_W 4 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_M 0x0000F000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_S 12 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_64_BYTE 0x00006000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_32_BYTE 0x00005000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_16_BYTE 0x00004000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_8_BYTE 0x00003000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_4_BYTE 0x00002000 // Field: [11] AHB_MST1_IDLE_EN // // Idle insertion between consecutive burst transfers on AHB // ENUMs: // IDLE Idle transfer insertion enabled // NO_IDLE Do not insert idle transfers. #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN 0x00000800 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_BITN 11 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_M 0x00000800 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_S 11 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_IDLE 0x00000800 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_NO_IDLE 0x00000000 // Field: [10] AHB_MST1_INCR_EN // // Burst length type of AHB transfer // ENUMs: // SPECIFIED Fixed length bursts or single transfers // UNSPECIFIED Unspecified length burst transfers #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN 0x00000400 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_BITN 10 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_M 0x00000400 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_S 10 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_SPECIFIED 0x00000400 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_UNSPECIFIED 0x00000000 // Field: [9] AHB_MST1_LOCK_EN // // Locked transform on AHB // ENUMs: // LOCKED Transfers are locked // NOT_LOCKED Transfers are not locked #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN 0x00000200 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_BITN 9 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_M 0x00000200 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_S 9 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_LOCKED 0x00000200 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_NOT_LOCKED 0x00000000 // Field: [8] AHB_MST1_BIGEND // // Endianess for the AHB master // ENUMs: // BIG_ENDIAN Big Endian // LITTLE_ENDIAN Little Endian #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND 0x00000100 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_BITN 8 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_M 0x00000100 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_S 8 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_BIG_ENDIAN 0x00000100 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_LITTLE_ENDIAN 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_DMAPORTERR // //***************************************************************************** // Field: [12] PORT1_AHB_ERROR // // A value of 1 indicates that the EIP-101 has detected an AHB bus error #define CRYPTO_DMAPORTERR_PORT1_AHB_ERROR 0x00001000 #define CRYPTO_DMAPORTERR_PORT1_AHB_ERROR_BITN 12 #define CRYPTO_DMAPORTERR_PORT1_AHB_ERROR_M 0x00001000 #define CRYPTO_DMAPORTERR_PORT1_AHB_ERROR_S 12 // Field: [9] PORT1_CHANNEL // // Indicates which channel has serviced last (channel 0 or channel 1) by AHB // master port. #define CRYPTO_DMAPORTERR_PORT1_CHANNEL 0x00000200 #define CRYPTO_DMAPORTERR_PORT1_CHANNEL_BITN 9 #define CRYPTO_DMAPORTERR_PORT1_CHANNEL_M 0x00000200 #define CRYPTO_DMAPORTERR_PORT1_CHANNEL_S 9 //***************************************************************************** // // Register: CRYPTO_O_DMAHWVER // //***************************************************************************** // Field: [27:24] HW_MAJOR_VERSION // // Major version number #define CRYPTO_DMAHWVER_HW_MAJOR_VERSION_W 4 #define CRYPTO_DMAHWVER_HW_MAJOR_VERSION_M 0x0F000000 #define CRYPTO_DMAHWVER_HW_MAJOR_VERSION_S 24 // Field: [23:20] HW_MINOR_VERSION // // Minor version number #define CRYPTO_DMAHWVER_HW_MINOR_VERSION_W 4 #define CRYPTO_DMAHWVER_HW_MINOR_VERSION_M 0x00F00000 #define CRYPTO_DMAHWVER_HW_MINOR_VERSION_S 20 // Field: [19:16] HW_PATCH_LEVEL // // Patch level // Starts at 0 at first delivery of this version #define CRYPTO_DMAHWVER_HW_PATCH_LEVEL_W 4 #define CRYPTO_DMAHWVER_HW_PATCH_LEVEL_M 0x000F0000 #define CRYPTO_DMAHWVER_HW_PATCH_LEVEL_S 16 // Field: [15:8] EIP_NUMBER_COMPL // // Bit-by-bit complement of the EIP_NUMBER field bits. #define CRYPTO_DMAHWVER_EIP_NUMBER_COMPL_W 8 #define CRYPTO_DMAHWVER_EIP_NUMBER_COMPL_M 0x0000FF00 #define CRYPTO_DMAHWVER_EIP_NUMBER_COMPL_S 8 // Field: [7:0] EIP_NUMBER // // Binary encoding of the EIP-number of this DMA controller (209) #define CRYPTO_DMAHWVER_EIP_NUMBER_W 8 #define CRYPTO_DMAHWVER_EIP_NUMBER_M 0x000000FF #define CRYPTO_DMAHWVER_EIP_NUMBER_S 0 //***************************************************************************** // // Register: CRYPTO_O_KEYWRITEAREA // //***************************************************************************** // Field: [7] RAM_AREA7 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA7 is not selected to be written. // 1: RAM_AREA7 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA7 0x00000080 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_BITN 7 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_M 0x00000080 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_S 7 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_SEL 0x00000080 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_NOT_SEL 0x00000000 // Field: [6] RAM_AREA6 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA6 is not selected to be written. // 1: RAM_AREA6 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA6 0x00000040 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_BITN 6 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_M 0x00000040 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_S 6 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_SEL 0x00000040 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_NOT_SEL 0x00000000 // Field: [5] RAM_AREA5 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA5 is not selected to be written. // 1: RAM_AREA5 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA5 0x00000020 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_BITN 5 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_M 0x00000020 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_S 5 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_SEL 0x00000020 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_NOT_SEL 0x00000000 // Field: [4] RAM_AREA4 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA4 is not selected to be written. // 1: RAM_AREA4 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA4 0x00000010 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_BITN 4 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_M 0x00000010 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_S 4 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_SEL 0x00000010 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_NOT_SEL 0x00000000 // Field: [3] RAM_AREA3 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA3 is not selected to be written. // 1: RAM_AREA3 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA3 0x00000008 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_BITN 3 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_M 0x00000008 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_S 3 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_SEL 0x00000008 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_NOT_SEL 0x00000000 // Field: [2] RAM_AREA2 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA2 is not selected to be written. // 1: RAM_AREA2 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA2 0x00000004 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_BITN 2 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_M 0x00000004 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_S 2 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_SEL 0x00000004 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_NOT_SEL 0x00000000 // Field: [1] RAM_AREA1 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA1 is not selected to be written. // 1: RAM_AREA1 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA1 0x00000002 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_BITN 1 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_M 0x00000002 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_S 1 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_SEL 0x00000002 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_NOT_SEL 0x00000000 // Field: [0] RAM_AREA0 // // Each RAM_AREAx represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written // 0: RAM_AREA0 is not selected to be written. // 1: RAM_AREA0 is selected to be written. // Writing to multiple RAM locations is possible only when the selected RAM // areas are sequential. // Keys that require more than one RAM locations (key size is 192 or 256 bits), // must start at one of the following areas: RAM_AREA0, RAM_AREA2, RAM_AREA4, // or RAM_AREA6. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA0 0x00000001 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_BITN 0 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_M 0x00000001 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_S 0 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_SEL 0x00000001 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_NOT_SEL 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_KEYWRITTENAREA // //***************************************************************************** // Field: [7] RAM_AREA_WRITTEN7 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7 0x00000080 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_BITN 7 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_M 0x00000080 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_S 7 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_WRITTEN 0x00000080 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_NOT_WRITTEN 0x00000000 // Field: [6] RAM_AREA_WRITTEN6 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6 0x00000040 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_BITN 6 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_M 0x00000040 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_S 6 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_WRITTEN 0x00000040 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_NOT_WRITTEN 0x00000000 // Field: [5] RAM_AREA_WRITTEN5 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5 0x00000020 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_BITN 5 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_M 0x00000020 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_S 5 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_WRITTEN 0x00000020 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_NOT_WRITTEN 0x00000000 // Field: [4] RAM_AREA_WRITTEN4 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4 0x00000010 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_BITN 4 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_M 0x00000010 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_S 4 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_WRITTEN 0x00000010 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_NOT_WRITTEN 0x00000000 // Field: [3] RAM_AREA_WRITTEN3 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3 0x00000008 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_BITN 3 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_M 0x00000008 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_S 3 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_WRITTEN 0x00000008 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_NOT_WRITTEN 0x00000000 // Field: [2] RAM_AREA_WRITTEN2 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2 0x00000004 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_BITN 2 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_M 0x00000004 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_S 2 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_WRITTEN 0x00000004 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_NOT_WRITTEN 0x00000000 // Field: [1] RAM_AREA_WRITTEN1 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1 0x00000002 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_BITN 1 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_M 0x00000002 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_S 1 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_WRITTEN 0x00000002 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_NOT_WRITTEN 0x00000000 // Field: [0] RAM_AREA_WRITTEN0 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.SWRES. After a soft reset, all keys must be rewritten to the key // store memory. #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0 0x00000001 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_BITN 0 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_M 0x00000001 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_S 0 //***************************************************************************** // // Register: CRYPTO_O_KEYSIZE // //***************************************************************************** // Field: [1:0] SIZE // // Key size: // 00: Reserved // When writing this to this register, the KEY_STORE_WRITTEN_AREA register is // reset. // ENUMs: // 256_BIT 256 bits // 192_BIT 192 bits // 128_BIT 128 bits #define CRYPTO_KEYSIZE_SIZE_W 2 #define CRYPTO_KEYSIZE_SIZE_M 0x00000003 #define CRYPTO_KEYSIZE_SIZE_S 0 #define CRYPTO_KEYSIZE_SIZE_256_BIT 0x00000003 #define CRYPTO_KEYSIZE_SIZE_192_BIT 0x00000002 #define CRYPTO_KEYSIZE_SIZE_128_BIT 0x00000001 //***************************************************************************** // // Register: CRYPTO_O_KEYREADAREA // //***************************************************************************** // Field: [31] BUSY // // Key store operation busy status flag (read only): // 0: Operation is complete. // 1: Operation is not completed and the key store is busy. #define CRYPTO_KEYREADAREA_BUSY 0x80000000 #define CRYPTO_KEYREADAREA_BUSY_BITN 31 #define CRYPTO_KEYREADAREA_BUSY_M 0x80000000 #define CRYPTO_KEYREADAREA_BUSY_S 31 // Field: [3:0] RAM_AREA // // Selects the area of the key store RAM from where the key needs to be read // that will be writen to the AES engine // RAM_AREA: // // RAM areas RAM_AREA0, RAM_AREA2, RAM_AREA4 and RAM_AREA6 are the only valid // read areas for 192 and 256 bits key sizes. // Only RAM areas that contain valid written keys can be selected. // ENUMs: // NO_RAM No RAM // RAM_AREA7 RAM Area 7 // RAM_AREA6 RAM Area 6 // RAM_AREA5 RAM Area 5 // RAM_AREA4 RAM Area 4 // RAM_AREA3 RAM Area 3 // RAM_AREA2 RAM Area 2 // RAM_AREA1 RAM Area 1 // RAM_AREA0 RAM Area 0 #define CRYPTO_KEYREADAREA_RAM_AREA_W 4 #define CRYPTO_KEYREADAREA_RAM_AREA_M 0x0000000F #define CRYPTO_KEYREADAREA_RAM_AREA_S 0 #define CRYPTO_KEYREADAREA_RAM_AREA_NO_RAM 0x00000008 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA7 0x00000007 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA6 0x00000006 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA5 0x00000005 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA4 0x00000004 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA3 0x00000003 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA2 0x00000002 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA1 0x00000001 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA0 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_AESKEY20 // //***************************************************************************** // Field: [31:0] AES_KEY2 // // AES_KEY2/AES_GHASH_H[31:0] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY20_AES_KEY2_W 32 #define CRYPTO_AESKEY20_AES_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY20_AES_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY21 // //***************************************************************************** // Field: [31:0] AES_KEY2 // // AES_KEY2/AES_GHASH_H[31:0] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY21_AES_KEY2_W 32 #define CRYPTO_AESKEY21_AES_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY21_AES_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY22 // //***************************************************************************** // Field: [31:0] AES_KEY2 // // AES_KEY2/AES_GHASH_H[31:0] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY22_AES_KEY2_W 32 #define CRYPTO_AESKEY22_AES_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY22_AES_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY23 // //***************************************************************************** // Field: [31:0] AES_KEY2 // // AES_KEY2/AES_GHASH_H[31:0] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY23_AES_KEY2_W 32 #define CRYPTO_AESKEY23_AES_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY23_AES_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY30 // //***************************************************************************** // Field: [31:0] AES_KEY3 // // AES_KEY3[31:0]/AES_KEY2[159:128] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY30_AES_KEY3_W 32 #define CRYPTO_AESKEY30_AES_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY30_AES_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY31 // //***************************************************************************** // Field: [31:0] AES_KEY3 // // AES_KEY3[31:0]/AES_KEY2[159:128] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY31_AES_KEY3_W 32 #define CRYPTO_AESKEY31_AES_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY31_AES_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY32 // //***************************************************************************** // Field: [31:0] AES_KEY3 // // AES_KEY3[31:0]/AES_KEY2[159:128] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY32_AES_KEY3_W 32 #define CRYPTO_AESKEY32_AES_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY32_AES_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY33 // //***************************************************************************** // Field: [31:0] AES_KEY3 // // AES_KEY3[31:0]/AES_KEY2[159:128] // // For GCM: // -[127:0] - GHASH_H - The internally calculated GHASH key is stored in these // registers. Only used for modes that use the GHASH function (GCM). // -[255:128] - This register is used to store intermediate values and is // initialized with 0s when loading a new key. // // For CCM: // -[255:0] - This register is used to store intermediate values. // // For CBC-MAC: // -[255:0] - ZEROES - This register must remain 0. #define CRYPTO_AESKEY33_AES_KEY3_W 32 #define CRYPTO_AESKEY33_AES_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY33_AES_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV0 // //***************************************************************************** // Field: [31:0] AES_IV // // AES_IV[31:0] // // Initialization vector // Used for regular non-ECB modes (CBC/CTR): // -[127:0] - AES_IV - For regular AES operations (CBC and CTR) these registers // must be written with a new 128-bit IV. After an operation, these registers // contain the latest 128-bit result IV, generated by the EIP-120t. If CTR mode // is selected, this value is incremented with 0x1: After first use - When a // new data block is submitted to the engine // // For GCM: // -[127:0] - AES_IV - For GCM operations, these registers must be written with // a new 128-bit IV. // After an operation, these registers contain the updated 128-bit result IV, // generated by the EIP-120t. Note that bits [127:96] of the IV represent the // initial counter value (which is 1 for GCM) and must therefore be initialized // to 0x01000000. This value is incremented with 0x1: After first use - When a // new data block is submitted to the engine. // // For CCM: // -[127:0] - A0: For CCM this field must be written with value A0, this value // is the concatenation of: A0-flags (5-bits of 0 and 3-bits 'L'), Nonce and // counter value. 'L' must be a copy from the 'L' value of the AES_CTRL // register. This 'L' indicates the width of the Nonce and counter. The loaded // counter must be initialized to 0. The total width of A0 is 128-bit. // // For CBC-MAC: // -[127:0] - Zeroes - For CBC-MAC this register must be written with 0s at the // start of each operation. After an operation, these registers contain the // 128-bit TAG output, generated by the EIP-120t. #define CRYPTO_AESIV0_AES_IV_W 32 #define CRYPTO_AESIV0_AES_IV_M 0xFFFFFFFF #define CRYPTO_AESIV0_AES_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV1 // //***************************************************************************** // Field: [31:0] AES_IV // // AES_IV[31:0] // // Initialization vector // Used for regular non-ECB modes (CBC/CTR): // -[127:0] - AES_IV - For regular AES operations (CBC and CTR) these registers // must be written with a new 128-bit IV. After an operation, these registers // contain the latest 128-bit result IV, generated by the EIP-120t. If CTR mode // is selected, this value is incremented with 0x1: After first use - When a // new data block is submitted to the engine // // For GCM: // -[127:0] - AES_IV - For GCM operations, these registers must be written with // a new 128-bit IV. // After an operation, these registers contain the updated 128-bit result IV, // generated by the EIP-120t. Note that bits [127:96] of the IV represent the // initial counter value (which is 1 for GCM) and must therefore be initialized // to 0x01000000. This value is incremented with 0x1: After first use - When a // new data block is submitted to the engine. // // For CCM: // -[127:0] - A0: For CCM this field must be written with value A0, this value // is the concatenation of: A0-flags (5-bits of 0 and 3-bits 'L'), Nonce and // counter value. 'L' must be a copy from the 'L' value of the AES_CTRL // register. This 'L' indicates the width of the Nonce and counter. The loaded // counter must be initialized to 0. The total width of A0 is 128-bit. // // For CBC-MAC: // -[127:0] - Zeroes - For CBC-MAC this register must be written with 0s at the // start of each operation. After an operation, these registers contain the // 128-bit TAG output, generated by the EIP-120t. #define CRYPTO_AESIV1_AES_IV_W 32 #define CRYPTO_AESIV1_AES_IV_M 0xFFFFFFFF #define CRYPTO_AESIV1_AES_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV2 // //***************************************************************************** // Field: [31:0] AES_IV // // AES_IV[31:0] // // Initialization vector // Used for regular non-ECB modes (CBC/CTR): // -[127:0] - AES_IV - For regular AES operations (CBC and CTR) these registers // must be written with a new 128-bit IV. After an operation, these registers // contain the latest 128-bit result IV, generated by the EIP-120t. If CTR mode // is selected, this value is incremented with 0x1: After first use - When a // new data block is submitted to the engine // // For GCM: // -[127:0] - AES_IV - For GCM operations, these registers must be written with // a new 128-bit IV. // After an operation, these registers contain the updated 128-bit result IV, // generated by the EIP-120t. Note that bits [127:96] of the IV represent the // initial counter value (which is 1 for GCM) and must therefore be initialized // to 0x01000000. This value is incremented with 0x1: After first use - When a // new data block is submitted to the engine. // // For CCM: // -[127:0] - A0: For CCM this field must be written with value A0, this value // is the concatenation of: A0-flags (5-bits of 0 and 3-bits 'L'), Nonce and // counter value. 'L' must be a copy from the 'L' value of the AES_CTRL // register. This 'L' indicates the width of the Nonce and counter. The loaded // counter must be initialized to 0. The total width of A0 is 128-bit. // // For CBC-MAC: // -[127:0] - Zeroes - For CBC-MAC this register must be written with 0s at the // start of each operation. After an operation, these registers contain the // 128-bit TAG output, generated by the EIP-120t. #define CRYPTO_AESIV2_AES_IV_W 32 #define CRYPTO_AESIV2_AES_IV_M 0xFFFFFFFF #define CRYPTO_AESIV2_AES_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV3 // //***************************************************************************** // Field: [31:0] AES_IV // // AES_IV[31:0] // // Initialization vector // Used for regular non-ECB modes (CBC/CTR): // -[127:0] - AES_IV - For regular AES operations (CBC and CTR) these registers // must be written with a new 128-bit IV. After an operation, these registers // contain the latest 128-bit result IV, generated by the EIP-120t. If CTR mode // is selected, this value is incremented with 0x1: After first use - When a // new data block is submitted to the engine // // For GCM: // -[127:0] - AES_IV - For GCM operations, these registers must be written with // a new 128-bit IV. // After an operation, these registers contain the updated 128-bit result IV, // generated by the EIP-120t. Note that bits [127:96] of the IV represent the // initial counter value (which is 1 for GCM) and must therefore be initialized // to 0x01000000. This value is incremented with 0x1: After first use - When a // new data block is submitted to the engine. // // For CCM: // -[127:0] - A0: For CCM this field must be written with value A0, this value // is the concatenation of: A0-flags (5-bits of 0 and 3-bits 'L'), Nonce and // counter value. 'L' must be a copy from the 'L' value of the AES_CTRL // register. This 'L' indicates the width of the Nonce and counter. The loaded // counter must be initialized to 0. The total width of A0 is 128-bit. // // For CBC-MAC: // -[127:0] - Zeroes - For CBC-MAC this register must be written with 0s at the // start of each operation. After an operation, these registers contain the // 128-bit TAG output, generated by the EIP-120t. #define CRYPTO_AESIV3_AES_IV_W 32 #define CRYPTO_AESIV3_AES_IV_M 0xFFFFFFFF #define CRYPTO_AESIV3_AES_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESCTL // //***************************************************************************** // Field: [31] CONTEXT_READY // // If 1, this read-only status bit indicates that the context data registers // can be overwritten and the host is permitted to write the next context. #define CRYPTO_AESCTL_CONTEXT_READY 0x80000000 #define CRYPTO_AESCTL_CONTEXT_READY_BITN 31 #define CRYPTO_AESCTL_CONTEXT_READY_M 0x80000000 #define CRYPTO_AESCTL_CONTEXT_READY_S 31 // Field: [30] SAVED_CONTEXT_RDY // // If 1, this status bit indicates that an AES authentication TAG and/or IV // block(s) is/are available for the host to retrieve. This bit is only // asserted if the save_context bit is set to 1. The bit is mutual exclusive // with the context_ready bit. // Writing one clears the bit to 0, indicating the AES core can start its next // operation. This bit is also cleared when the 4th word of the output TAG // and/or IV is read. // Note: All other mode bit writes are ignored when this mode bit is written // with 1. // Note: This bit is controlled automatically by the EIP-120t for TAG read DMA // operations. #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY 0x40000000 #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY_BITN 30 #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY_M 0x40000000 #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY_S 30 // Field: [29] SAVE_CONTEXT // // This bit indicates that an authentication TAG or result IV needs to be // stored as a result context. // Typically this bit must be set for authentication modes returning a TAG // (CBC-MAC, GCM and CCM), or for basic encryption modes that require future // continuation with the current result IV. // If this bit is set, the engine retains its full context until the TAG and/or // IV registers are read. // The TAG or IV must be read before the AES engine can start a new operation. #define CRYPTO_AESCTL_SAVE_CONTEXT 0x20000000 #define CRYPTO_AESCTL_SAVE_CONTEXT_BITN 29 #define CRYPTO_AESCTL_SAVE_CONTEXT_M 0x20000000 #define CRYPTO_AESCTL_SAVE_CONTEXT_S 29 // Field: [24:22] CCM_M // // Defines M, which indicates the length of the authentication field for CCM // operations; the authentication field length equals two times (the value of // CCM-M plus one). // Note: The EIP-120t always returns a 128-bit authentication field, of which // the M least significant bytes are valid. All values are supported. #define CRYPTO_AESCTL_CCM_M_W 3 #define CRYPTO_AESCTL_CCM_M_M 0x01C00000 #define CRYPTO_AESCTL_CCM_M_S 22 // Field: [21:19] CCM_L // // Defines L, which indicates the width of the length field for CCM operations; // the length field in bytes equals the value of CMM-L plus one. All values are // supported. #define CRYPTO_AESCTL_CCM_L_W 3 #define CRYPTO_AESCTL_CCM_L_M 0x00380000 #define CRYPTO_AESCTL_CCM_L_S 19 // Field: [18] CCM // // If set to 1, AES-CCM is selected // AES-CCM is a combined mode, using AES for authentication and encryption. // Note: Selecting AES-CCM mode requires writing of the AAD length register // after all other registers. // Note: The CTR mode bit in this register must also be set to 1 to enable // AES-CTR; selecting other AES modes than CTR mode is invalid. #define CRYPTO_AESCTL_CCM 0x00040000 #define CRYPTO_AESCTL_CCM_BITN 18 #define CRYPTO_AESCTL_CCM_M 0x00040000 #define CRYPTO_AESCTL_CCM_S 18 // Field: [17:16] GCM // // Set these bits to 11 to select AES-GCM mode. // AES-GCM is a combined mode, using the Galois field multiplier GF(2 to the // power of 128) for authentication and AES-CTR mode for encryption. // Note: The CTR mode bit in this register must also be set to 1 to enable // AES-CTR // Bit combination description: // 00 = No GCM mode // 01 = Reserved, do not select // 10 = Reserved, do not select // 11 = Autonomous GHASH (both H- and Y0-encrypted calculated internally) // Note: The EIP-120t-1 configuration only supports mode 11 (autonomous GHASH), // other GCM modes are not allowed. #define CRYPTO_AESCTL_GCM_W 2 #define CRYPTO_AESCTL_GCM_M 0x00030000 #define CRYPTO_AESCTL_GCM_S 16 // Field: [15] CBC_MAC // // Set to 1 to select AES-CBC MAC mode. // The direction bit must be set to 1 for this mode. // Selecting this mode requires writing the length register after all other // registers. #define CRYPTO_AESCTL_CBC_MAC 0x00008000 #define CRYPTO_AESCTL_CBC_MAC_BITN 15 #define CRYPTO_AESCTL_CBC_MAC_M 0x00008000 #define CRYPTO_AESCTL_CBC_MAC_S 15 // Field: [8:7] CTR_WIDTH // // Specifies the counter width for AES-CTR mode // 00 = 32-bit counter // 01 = 64-bit counter // 10 = 96-bit counter // 11 = 128-bit counter // ENUMs: // 128_BIT 128 bits // 96_BIT 96 bits // 64_BIT 64 bits // 32_BIT 32 bits #define CRYPTO_AESCTL_CTR_WIDTH_W 2 #define CRYPTO_AESCTL_CTR_WIDTH_M 0x00000180 #define CRYPTO_AESCTL_CTR_WIDTH_S 7 #define CRYPTO_AESCTL_CTR_WIDTH_128_BIT 0x00000180 #define CRYPTO_AESCTL_CTR_WIDTH_96_BIT 0x00000100 #define CRYPTO_AESCTL_CTR_WIDTH_64_BIT 0x00000080 #define CRYPTO_AESCTL_CTR_WIDTH_32_BIT 0x00000000 // Field: [6] CTR // // If set to 1, AES counter mode (CTR) is selected. // Note: This bit must also be set for GCM and CCM, when encryption/decryption // is required. #define CRYPTO_AESCTL_CTR 0x00000040 #define CRYPTO_AESCTL_CTR_BITN 6 #define CRYPTO_AESCTL_CTR_M 0x00000040 #define CRYPTO_AESCTL_CTR_S 6 // Field: [5] CBC // // If set to 1, cipher-block-chaining (CBC) mode is selected. #define CRYPTO_AESCTL_CBC 0x00000020 #define CRYPTO_AESCTL_CBC_BITN 5 #define CRYPTO_AESCTL_CBC_M 0x00000020 #define CRYPTO_AESCTL_CBC_S 5 // Field: [4:3] KEY_SIZE // // This read-only field specifies the key size. // The key size is automatically configured when a new key is loaded through // the key store module. // 00 = N/A - Reserved // 01 = 128-bit // 10 = 192-bit // 11 = 256-bit #define CRYPTO_AESCTL_KEY_SIZE_W 2 #define CRYPTO_AESCTL_KEY_SIZE_M 0x00000018 #define CRYPTO_AESCTL_KEY_SIZE_S 3 // Field: [2] DIR // // If set to 1 an encrypt operation is performed. // If set to 0 a decrypt operation is performed. // This bit must be written with a 1 when CBC-MAC is selected. #define CRYPTO_AESCTL_DIR 0x00000004 #define CRYPTO_AESCTL_DIR_BITN 2 #define CRYPTO_AESCTL_DIR_M 0x00000004 #define CRYPTO_AESCTL_DIR_S 2 // Field: [1] INPUT_READY // // If 1, this status bit indicates that the 16-byte AES input buffer is empty. // The host is permitted to write the next block of data. // Writing 0 clears the bit to 0 and indicates that the AES core can use the // provided input data block. // Writing 1 to this bit is ignored. // Note: For DMA operations, this bit is automatically controlled by the // EIP-120t. // After reset, this bit is 0. After writing a context, this bit becomes 1. #define CRYPTO_AESCTL_INPUT_READY 0x00000002 #define CRYPTO_AESCTL_INPUT_READY_BITN 1 #define CRYPTO_AESCTL_INPUT_READY_M 0x00000002 #define CRYPTO_AESCTL_INPUT_READY_S 1 // Field: [0] OUTPUT_READY // // If 1, this status bit indicates that an AES output block is available to be // retrieved by the host. // Writing 0 clears the bit to 0 and indicates that output data is read by the // host. The AES core can provide a next output data block. // Writing 1 to this bit is ignored. // Note: For DMA operations, this bit is automatically controlled by the // EIP-120t. #define CRYPTO_AESCTL_OUTPUT_READY 0x00000001 #define CRYPTO_AESCTL_OUTPUT_READY_BITN 0 #define CRYPTO_AESCTL_OUTPUT_READY_M 0x00000001 #define CRYPTO_AESCTL_OUTPUT_READY_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATALEN0 // //***************************************************************************** // Field: [31:0] C_LENGTH // // C_LENGTH[31:0] // Bits [60:0] of the crypto length registers (LSW and MSW) store the // cryptographic data length in bytes for all modes. Once processing with this // context is started, this length decrements to 0. Data lengths up to (261: 1) // bytes are allowed. // For GCM, any value up to 236 - 32 bytes can be used. This is because a // 32-bit counter mode is used; the maximum number of 128-bit blocks is 232 - // 2, resulting in a maximum number of bytes of 236 - 32. // A write to this register triggers the engine to start using this context. // This is valid for all modes except GCM and CCM. // Note: For the combined modes (GCM and CCM), this length does not include the // authentication only data; the authentication length is specified in the // AESAUTHLEN register // All modes must have a length greater than 0. For the combined modes, it is // allowed to have one of the lengths equal to 0. // For the basic encryption modes (ECB, CBC, and CTR) it is allowed to program // zero to the length field; in that case the length is assumed infinite. // All data must be byte (8-bit) aligned for stream cipher modes; bit aligned // data streams are not supported by the EIP-120t. For block cipher modes, the // data length must be programmed in multiples of the block cipher size, 16 // bytes. // For a host read operation, these registers return all-0s. #define CRYPTO_AESDATALEN0_C_LENGTH_W 32 #define CRYPTO_AESDATALEN0_C_LENGTH_M 0xFFFFFFFF #define CRYPTO_AESDATALEN0_C_LENGTH_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATALEN1 // //***************************************************************************** // Field: [28:0] C_LENGTH // // C_LENGTH[60:32] // Bits [60:0] of the crypto length registers (LSW and MSW) store the // cryptographic data length in bytes for all modes. Once processing with this // context is started, this length decrements to 0. Data lengths up to (261: 1) // bytes are allowed. // For GCM, any value up to 236 - 32 bytes can be used. This is because a // 32-bit counter mode is used; the maximum number of 128-bit blocks is 232 - // 2, resulting in a maximum number of bytes of 236 - 32. // A write to this register triggers the engine to start using this context. // This is valid for all modes except GCM and CCM. // Note: For the combined modes (GCM and CCM), this length does not include the // authentication only data; the authentication length is specified in the // AESAUTHLEN register // All modes must have a length greater than 0. For the combined modes, it is // allowed to have one of the lengths equal to 0. // For the basic encryption modes (ECB, CBC, and CTR) it is allowed to program // zero to the length field; in that case the length is assumed infinite. // All data must be byte (8-bit) aligned for stream cipher modes; bit aligned // data streams are not supported by the EIP-120t. For block cipher modes, the // data length must be programmed in multiples of the block cipher size, 16 // bytes. // For a host read operation, these registers return all-0s. #define CRYPTO_AESDATALEN1_C_LENGTH_W 29 #define CRYPTO_AESDATALEN1_C_LENGTH_M 0x1FFFFFFF #define CRYPTO_AESDATALEN1_C_LENGTH_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESAUTHLEN // //***************************************************************************** // Field: [31:0] AUTH_LENGTH // // Bits [31:0] of the authentication length register store the authentication // data length in bytes for combined modes only (GCM or CCM). // Supported AAD-lengths for CCM are from 0 to (2^16 - 2^8) bytes. For GCM any // value up to (2^32 - 1) bytes can be used. Once processing with this context // is started, this length decrements to 0. // A write to this register triggers the engine to start using this context for // GCM and CCM. // For a host read operation, these registers return all-0s. #define CRYPTO_AESAUTHLEN_AUTH_LENGTH_W 32 #define CRYPTO_AESAUTHLEN_AUTH_LENGTH_M 0xFFFFFFFF #define CRYPTO_AESAUTHLEN_AUTH_LENGTH_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT0 // //***************************************************************************** // Field: [31:0] DATA // // Data register 0 for output block data from the Crypto peripheral. // These bits = AES Output Data[31:0] of {127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_READY // must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT0_DATA_W 32 #define CRYPTO_AESDATAOUT0_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT0_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN0 // //***************************************************************************** // Field: [31:0] AES_DATA_IN_OUT // // AES input data[31:0] / AES output data[31:0] // Data registers for input/output block data to/from the EIP-120t. // For normal operations, this register is not used, since data input and // output is transferred from and to the AES core via DMA. For a host write // operation, these registers must be written with the 128-bit input block for // the next AES operation. Writing at a word-aligned offset within this address // range stores the word (4 bytes) of data into the corresponding position of // 4-word deep (16 bytes = 128-bit AES block) data input buffer. This buffer is // used for the next AES operation. If the last data block is not completely // filled with valid data (see notes below), it is allowed to write only the // words with valid data. Next AES operation is triggered by writing to the // input_ready flag of the AES_CTRL register. // For a host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range reads one word (4 bytes) of data out the 4-word deep (16 // bytes = 128-bits AES block) data output buffer. The words (4 words, one full // block) should be read before the core will move the next block to the data // output buffer. To empty the data output buffer, the output_ready flag of the // AES_CTRL register must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]). For GCM/CCM, the // last block of both AAD and message data may contain less than 128 bits // (refer to [NIST 800-38D]). The EIP-120t automatically pads or masks // misaligned ending data blocks with 0s for GCM, CCM and CBC-MAC. For CTR // mode, the remaining data in an unaligned data block is ignored. // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAIN0_AES_DATA_IN_OUT_W 32 #define CRYPTO_AESDATAIN0_AES_DATA_IN_OUT_M 0xFFFFFFFF #define CRYPTO_AESDATAIN0_AES_DATA_IN_OUT_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT1 // //***************************************************************************** // Field: [31:0] DATA // // Data register 0 for output block data from the Crypto peripheral. // These bits = AES Output Data[31:0] of {127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_READY // must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT1_DATA_W 32 #define CRYPTO_AESDATAOUT1_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT1_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN1 // //***************************************************************************** // Field: [31:0] AES_DATA_IN_OUT // // AES input data[31:0] / AES output data[63:32] // Data registers for input/output block data to/from the EIP-120t. // For normal operations, this register is not used, since data input and // output is transferred from and to the AES core via DMA. For a host write // operation, these registers must be written with the 128-bit input block for // the next AES operation. Writing at a word-aligned offset within this address // range stores the word (4 bytes) of data into the corresponding position of // 4-word deep (16 bytes = 128-bit AES block) data input buffer. This buffer is // used for the next AES operation. If the last data block is not completely // filled with valid data (see notes below), it is allowed to write only the // words with valid data. Next AES operation is triggered by writing to the // input_ready flag of the AES_CTRL register. // For a host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range reads one word (4 bytes) of data out the 4-word deep (16 // bytes = 128-bits AES block) data output buffer. The words (4 words, one full // block) should be read before the core will move the next block to the data // output buffer. To empty the data output buffer, the output_ready flag of the // AES_CTRL register must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]). For GCM/CCM, the // last block of both AAD and message data may contain less than 128 bits // (refer to [NIST 800-38D]). The EIP-120t automatically pads or masks // misaligned ending data blocks with 0s for GCM, CCM and CBC-MAC. For CTR // mode, the remaining data in an unaligned data block is ignored. // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAIN1_AES_DATA_IN_OUT_W 32 #define CRYPTO_AESDATAIN1_AES_DATA_IN_OUT_M 0xFFFFFFFF #define CRYPTO_AESDATAIN1_AES_DATA_IN_OUT_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT2 // //***************************************************************************** // Field: [31:0] DATA // // Data register 0 for output block data from the Crypto peripheral. // These bits = AES Output Data[31:0] of {127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_READY // must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT2_DATA_W 32 #define CRYPTO_AESDATAOUT2_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT2_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN2 // //***************************************************************************** // Field: [31:0] AES_DATA_IN_OUT // // AES input data[95:64] / AES output data[95:64] // Data registers for input/output block data to/from the EIP-120t. // For normal operations, this register is not used, since data input and // output is transferred from and to the AES core via DMA. For a host write // operation, these registers must be written with the 128-bit input block for // the next AES operation. Writing at a word-aligned offset within this address // range stores the word (4 bytes) of data into the corresponding position of // 4-word deep (16 bytes = 128-bit AES block) data input buffer. This buffer is // used for the next AES operation. If the last data block is not completely // filled with valid data (see notes below), it is allowed to write only the // words with valid data. Next AES operation is triggered by writing to the // input_ready flag of the AES_CTRL register. // For a host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range reads one word (4 bytes) of data out the 4-word deep (16 // bytes = 128-bits AES block) data output buffer. The words (4 words, one full // block) should be read before the core will move the next block to the data // output buffer. To empty the data output buffer, the output_ready flag of the // AES_CTRL register must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]). For GCM/CCM, the // last block of both AAD and message data may contain less than 128 bits // (refer to [NIST 800-38D]). The EIP-120t automatically pads or masks // misaligned ending data blocks with 0s for GCM, CCM and CBC-MAC. For CTR // mode, the remaining data in an unaligned data block is ignored. // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAIN2_AES_DATA_IN_OUT_W 32 #define CRYPTO_AESDATAIN2_AES_DATA_IN_OUT_M 0xFFFFFFFF #define CRYPTO_AESDATAIN2_AES_DATA_IN_OUT_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT3 // //***************************************************************************** // Field: [31:0] DATA // // Data register 0 for output block data from the Crypto peripheral. // These bits = AES Output Data[31:0] of {127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_READY // must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT3_DATA_W 32 #define CRYPTO_AESDATAOUT3_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT3_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN3 // //***************************************************************************** // Field: [31:0] AES_DATA_IN_OUT // // AES input data[127:96] / AES output data[127:96] // Data registers for input/output block data to/from the EIP-120t. // For normal operations, this register is not used, since data input and // output is transferred from and to the AES core via DMA. For a host write // operation, these registers must be written with the 128-bit input block for // the next AES operation. Writing at a word-aligned offset within this address // range stores the word (4 bytes) of data into the corresponding position of // 4-word deep (16 bytes = 128-bit AES block) data input buffer. This buffer is // used for the next AES operation. If the last data block is not completely // filled with valid data (see notes below), it is allowed to write only the // words with valid data. Next AES operation is triggered by writing to the // input_ready flag of the AES_CTRL register. // For a host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range reads one word (4 bytes) of data out the 4-word deep (16 // bytes = 128-bits AES block) data output buffer. The words (4 words, one full // block) should be read before the core will move the next block to the data // output buffer. To empty the data output buffer, the output_ready flag of the // AES_CTRL register must be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]). For GCM/CCM, the // last block of both AAD and message data may contain less than 128 bits // (refer to [NIST 800-38D]). The EIP-120t automatically pads or masks // misaligned ending data blocks with 0s for GCM, CCM and CBC-MAC. For CTR // mode, the remaining data in an unaligned data block is ignored. // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAIN3_AES_DATA_IN_OUT_W 32 #define CRYPTO_AESDATAIN3_AES_DATA_IN_OUT_M 0xFFFFFFFF #define CRYPTO_AESDATAIN3_AES_DATA_IN_OUT_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT0 // //***************************************************************************** // Field: [31:0] AES_TAG // // AES_TAG[31:0] // Bits [31:0] of this register stores the authentication value for the // combined and authentication only modes. // For a host read operation, these registers contain the last 128-bit TAG // output of the EIP-120t; the TAG is available until the next context is // written. // This register will only contain valid data if the TAG is available and when // the AESCTL.SAVED_CONTEXT_RDY register is set. During processing or for // operations/modes that do not return a TAG, reads from this register return // data from the IV register. #define CRYPTO_AESTAGOUT0_AES_TAG_W 32 #define CRYPTO_AESTAGOUT0_AES_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT0_AES_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT1 // //***************************************************************************** // Field: [31:0] AES_TAG // // AES_TAG[31:0] // Bits [31:0] of this register stores the authentication value for the // combined and authentication only modes. // For a host read operation, these registers contain the last 128-bit TAG // output of the EIP-120t; the TAG is available until the next context is // written. // This register will only contain valid data if the TAG is available and when // the AESCTL.SAVED_CONTEXT_RDY register is set. During processing or for // operations/modes that do not return a TAG, reads from this register return // data from the IV register. #define CRYPTO_AESTAGOUT1_AES_TAG_W 32 #define CRYPTO_AESTAGOUT1_AES_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT1_AES_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT2 // //***************************************************************************** // Field: [31:0] AES_TAG // // AES_TAG[31:0] // Bits [31:0] of this register stores the authentication value for the // combined and authentication only modes. // For a host read operation, these registers contain the last 128-bit TAG // output of the EIP-120t; the TAG is available until the next context is // written. // This register will only contain valid data if the TAG is available and when // the AESCTL.SAVED_CONTEXT_RDY register is set. During processing or for // operations/modes that do not return a TAG, reads from this register return // data from the IV register. #define CRYPTO_AESTAGOUT2_AES_TAG_W 32 #define CRYPTO_AESTAGOUT2_AES_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT2_AES_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT3 // //***************************************************************************** // Field: [31:0] AES_TAG // // AES_TAG[31:0] // Bits [31:0] of this register stores the authentication value for the // combined and authentication only modes. // For a host read operation, these registers contain the last 128-bit TAG // output of the EIP-120t; the TAG is available until the next context is // written. // This register will only contain valid data if the TAG is available and when // the AESCTL.SAVED_CONTEXT_RDY register is set. During processing or for // operations/modes that do not return a TAG, reads from this register return // data from the IV register. #define CRYPTO_AESTAGOUT3_AES_TAG_W 32 #define CRYPTO_AESTAGOUT3_AES_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT3_AES_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN1 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[63:32] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine is // busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN1_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN1_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN1_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN2 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[95:64] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine is // busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN2_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN2_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN2_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN3 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[127:96] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when the rfd_in bit of // the HASH_IO_BUF_CTRL register is high. If the rfd_in bit is 0, the engine is // busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASH_IO_BUF_CTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN3_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN3_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN3_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN4 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[159:128] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is '1'. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN4_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN4_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN4_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN5 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[191:160] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN5_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN5_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN5_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN6 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[223:192] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN6_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN6_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN6_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN7 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[255:224] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN7_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN7_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN7_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN8 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[287:256] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN8_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN8_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN8_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN9 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[319:288] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN9_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN9_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN9_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN10 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[351:320] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN10_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN10_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN10_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN11 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[383:352] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN11_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN11_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN11_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN12 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[415:384] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN12_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN12_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN12_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN13 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[447:416] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN13_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN13_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN13_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN14 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[479:448] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN14_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN14_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN14_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN15 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[511:480] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN15_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN15_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN15_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN16 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[543:512] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN16_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN16_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN16_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN17 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[575:544] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN17_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN17_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN17_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN18 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[607:576] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN18_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN18_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN18_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN19 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[639:608] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN19_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN19_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN19_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN20 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[671:640] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN20_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN20_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN20_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN21 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[703:672] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN21_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN21_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN21_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN22 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[735:704] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN22_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN22_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN22_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN23 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[767:736] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN23_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN23_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN23_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN24 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[799:768] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN24_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN24_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN24_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN25 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[831:800] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN25_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN25_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN25_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN26 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[863:832] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN26_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN26_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN26_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN27 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[895:864] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN27_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN27_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN27_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN28 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[923:896] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN28_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN28_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN28_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN29 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[959:924] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN29_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN29_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN29_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN30 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[991:960] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN30_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN30_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN30_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDATAIN31 // //***************************************************************************** // Field: [31:0] HASH_DATA_IN // // HASH_DATA_IN[1023:992] // These registers must be written with the 512-bit input data. The data lines // are connected directly to the data input of the hash module and hence into // the engine's internal data buffer. Writing to each of the registers triggers // a corresponding 32-bit write enable to the internal buffer. // Note: The host may only write the input data buffer when // HASHIOBUFCTRL.RFD_IN is 1. If the HASHIOBUFCTRL.RFD_IN is 0, the engine // is busy with processing. During processing, it is not allowed to write new // input data. // For message lengths larger than 64 bytes, multiple blocks of data are // written to this input buffer using a handshake through flags of the // HASHIOBUFCTRL register. All blocks except the last are required to be 512 // bits in size. If the last block is not 512 bits long, only the least // significant bits of data must be written, but they must be padded with 0s to // the next 32-bit boundary. // Host read operations from these register addresses return 0s. #define CRYPTO_HASHDATAIN31_HASH_DATA_IN_W 32 #define CRYPTO_HASHDATAIN31_HASH_DATA_IN_M 0xFFFFFFFF #define CRYPTO_HASHDATAIN31_HASH_DATA_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHIOBUFCTRL // //***************************************************************************** // Field: [7] PAD_DMA_MESSAGE // // Note: This bit must only be used when data is supplied through the DMA. It // should not be used when data is supplied through the slave interface. // This bit indicates whether the hash engine has to pad the message, received // through the DMA and finalize the hash. // When set to 1, the hash engine pads the last block using the programmed // length. After padding, the final hash result is calculated. // When set to 0, the hash engine treats the last written block as block-size // aligned and calculates the intermediate digest. // This bit is automatically cleared when the last DMA data block is arrived in // the hash engine. #define CRYPTO_HASHIOBUFCTRL_PAD_DMA_MESSAGE 0x00000080 #define CRYPTO_HASHIOBUFCTRL_PAD_DMA_MESSAGE_BITN 7 #define CRYPTO_HASHIOBUFCTRL_PAD_DMA_MESSAGE_M 0x00000080 #define CRYPTO_HASHIOBUFCTRL_PAD_DMA_MESSAGE_S 7 // Field: [6] GET_DIGEST // // Note: The bit description below is only applicable when data is sent through // the slave interface. This bit must be set to 0 when data is received through // the DMA. // This bit indicates whether the hash engine should provide the hash digest. // When provided simultaneously with data_in_av, the hash digest is provided // after processing the data that is currently in the HASHDATAINn register. // When provided without data_in_av, the current internal digest buffer value // is copied to the HASHDIGESTn registers. // The host must write a 1 to this bit to make the intermediate hash digest // available. // Writing 0 to this bit has no effect. // This bit is automatically cleared (that is, reads 0) when the hash engine // has processed the contents of the HASHDATAINn register. In the period // between this bit is set by the host and the actual HASHDATAINn processing, // this bit reads 1. #define CRYPTO_HASHIOBUFCTRL_GET_DIGEST 0x00000040 #define CRYPTO_HASHIOBUFCTRL_GET_DIGEST_BITN 6 #define CRYPTO_HASHIOBUFCTRL_GET_DIGEST_M 0x00000040 #define CRYPTO_HASHIOBUFCTRL_GET_DIGEST_S 6 // Field: [5] PAD_MESSAGE // // Note: The bit description below is only applicable when data is sent through // the slave interface. This bit must be set to 0 when data is received through // the DMA. // This bit indicates that the HASHDATAINn registers hold the last data of the // message and hash padding must be applied. // The host must write this bit to 1 in order to indicate to the hash engine // that the HASHDATAINn register currently holds the last data of the message. // When pad_message is set to 1, the hash engine will add padding bits to the // data currently in the HASHDATAINn register. // When the last message block is smaller than 512 bits, the pad_message bit // must be set to 1 together with the data_in_av bit. // When the last message block is equal to 512 bits, pad_message may be set // together with data_in_av. In this case the pad_message bit may also be set // after the last data block has been written to the hash engine (so when the // rfd_in bit has become 1 again after writing the last data block). // Writing 0 to this bit has no effect. // This bit is automatically cleared (i.e. reads 0) by the hash engine. This // bit reads 1 between the time it was set by the host and the hash engine // interpreted its value. #define CRYPTO_HASHIOBUFCTRL_PAD_MESSAGE 0x00000020 #define CRYPTO_HASHIOBUFCTRL_PAD_MESSAGE_BITN 5 #define CRYPTO_HASHIOBUFCTRL_PAD_MESSAGE_M 0x00000020 #define CRYPTO_HASHIOBUFCTRL_PAD_MESSAGE_S 5 // Field: [2] RFD_IN // // Note: The bit description below is only applicable when data is sent through // the slave interface. This bit can be ignored when data is received through // the DMA. // Read-only status of the input buffer of the hash engine. // When 1, the input buffer of the hash engine can accept new data; the // HASHDATAINn registers can safely be populated with new data. // When 0, the input buffer of the hash engine is processing the data that is // currently in HASHDATAINn; writing new data to these registers is not // allowed. #define CRYPTO_HASHIOBUFCTRL_RFD_IN 0x00000004 #define CRYPTO_HASHIOBUFCTRL_RFD_IN_BITN 2 #define CRYPTO_HASHIOBUFCTRL_RFD_IN_M 0x00000004 #define CRYPTO_HASHIOBUFCTRL_RFD_IN_S 2 // Field: [1] DATA_IN_AV // // Note: The bit description below is only applicable when data is sent through // the slave interface. This bit must be set to 0 when data is received through // the DMA. // This bit indicates that the HASHDATAINn registers contain new input data for // processing. // The host must write a 1 to this bit to start processing the data in // HASHDATAINn; the hash engine will process the new data as soon as it is // ready for it (rfd_in bit is 1). // Writing 0 to this bit has no effect. // This bit is automatically cleared (i.e. reads as 0) when the hash engine // starts processing the HASHDATAINn contents. This bit reads 1 between the // time it was set by the host and the hash engine actually starts processing // the input data block. #define CRYPTO_HASHIOBUFCTRL_DATA_IN_AV 0x00000002 #define CRYPTO_HASHIOBUFCTRL_DATA_IN_AV_BITN 1 #define CRYPTO_HASHIOBUFCTRL_DATA_IN_AV_M 0x00000002 #define CRYPTO_HASHIOBUFCTRL_DATA_IN_AV_S 1 // Field: [0] OUTPUT_FULL // // Indicates that the output buffer registers (HASHDIGESTn) are available for // reading by the host. // When this bit reads 0, the output buffer registers are released; the hash // engine is allowed to write new data to it. In this case, the registers // should not be read by the host. // When this bit reads 1, the hash engine has stored the result of the latest // hash operation in the output buffer registers. As long as this bit reads 1, // the host may read output buffer registers and the hash engine is prevented // from writing new data to the output buffer. // After retrieving the hash result data from the output buffer, the host must // write a 1 to this bit to clear it. This makes the digest output buffer // available for the hash engine to store new hash results. // Writing 0 to this bit has no effect. // Note: If this bit is asserted (1) no new operation should be started before // the digest is retrieved from the hash engine and this bit is cleared (0). #define CRYPTO_HASHIOBUFCTRL_OUTPUT_FULL 0x00000001 #define CRYPTO_HASHIOBUFCTRL_OUTPUT_FULL_BITN 0 #define CRYPTO_HASHIOBUFCTRL_OUTPUT_FULL_M 0x00000001 #define CRYPTO_HASHIOBUFCTRL_OUTPUT_FULL_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHMODE // //***************************************************************************** // Field: [6] SHA384_MODE // // The host must write this bit with 1 prior to processing a SHA 384 session. #define CRYPTO_HASHMODE_SHA384_MODE 0x00000040 #define CRYPTO_HASHMODE_SHA384_MODE_BITN 6 #define CRYPTO_HASHMODE_SHA384_MODE_M 0x00000040 #define CRYPTO_HASHMODE_SHA384_MODE_S 6 // Field: [5] SHA512_MODE // // The host must write this bit with 1 prior to processing a SHA 512 session. #define CRYPTO_HASHMODE_SHA512_MODE 0x00000020 #define CRYPTO_HASHMODE_SHA512_MODE_BITN 5 #define CRYPTO_HASHMODE_SHA512_MODE_M 0x00000020 #define CRYPTO_HASHMODE_SHA512_MODE_S 5 // Field: [4] SHA224_MODE // // The host must write this bit with 1 prior to processing a SHA 224 session. #define CRYPTO_HASHMODE_SHA224_MODE 0x00000010 #define CRYPTO_HASHMODE_SHA224_MODE_BITN 4 #define CRYPTO_HASHMODE_SHA224_MODE_M 0x00000010 #define CRYPTO_HASHMODE_SHA224_MODE_S 4 // Field: [3] SHA256_MODE // // The host must write this bit with 1 prior to processing a SHA 256 session. #define CRYPTO_HASHMODE_SHA256_MODE 0x00000008 #define CRYPTO_HASHMODE_SHA256_MODE_BITN 3 #define CRYPTO_HASHMODE_SHA256_MODE_M 0x00000008 #define CRYPTO_HASHMODE_SHA256_MODE_S 3 // Field: [0] NEW_HASH // // When set to 1, it indicates that the hash engine must start processing a new // hash session. The [HASHDIGESTn.* ] registers will automatically be loaded // with the initial hash algorithm constants of the selected hash algorithm. // When this bit is 0 while the hash processing is started, the initial hash // algorithm constants are not loaded in the HASHDIGESTn registers. The hash // engine will start processing with the digest that is currently in its // internal HASHDIGESTn registers. // This bit is automatically cleared when hash processing is started. #define CRYPTO_HASHMODE_NEW_HASH 0x00000001 #define CRYPTO_HASHMODE_NEW_HASH_BITN 0 #define CRYPTO_HASHMODE_NEW_HASH_M 0x00000001 #define CRYPTO_HASHMODE_NEW_HASH_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHINLENL // //***************************************************************************** // Field: [31:0] LENGTH_IN // // LENGTH_IN[31:0] // Message length registers. The content of these registers is used by the hash // engine during the message padding phase of the hash session. The data lines // of this registers are directly connected to the interface of the hash // engine. // For a write operation by the host, these registers should be written with // the message length in bits. // // Final hash operations: // The total input data length must be programmed for new hash operations that // require finalization (padding). The input data must be provided through the // slave or DMA interface. // // Continued hash operations (finalized): // For continued hash operations that require finalization, the total message // length must be programmed, including the length of previously hashed data // that corresponds to the written input digest. // // Non-final hash operations: // For hash operations that do not require finalization (input data length is // multiple of 512-bits which is SHA-256 data block size), the length field // does not need to be programmed since not used by the operation. // // If the message length in bits is below (2^32-1), then only this register // needs to be written. The hardware automatically sets HASH_LENGTH_IN_H to 0s // in this case. // The host may write the length register at any time during the hash session // when the HASHIOBUFCTRL.RFD_IN is high. The length register must be written // before the last data of the active hash session is written into the hash // engine. // host read operations from these register locations will return 0s. // Note: When getting data from DMA, this register must be programmed before // DMA is programmed to start. #define CRYPTO_HASHINLENL_LENGTH_IN_W 32 #define CRYPTO_HASHINLENL_LENGTH_IN_M 0xFFFFFFFF #define CRYPTO_HASHINLENL_LENGTH_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHINLENH // //***************************************************************************** // Field: [31:0] LENGTH_IN // // LENGTH_IN[63:32] // Message length registers. The content of these registers is used by the hash // engine during the message padding phase of the hash session. The data lines // of this registers are directly connected to the interface of the hash // engine. // For a write operation by the host, these registers should be written with // the message length in bits. // // Final hash operations: // The total input data length must be programmed for new hash operations that // require finalization (padding). The input data must be provided through the // slave or DMA interface. // // Continued hash operations (finalized): // For continued hash operations that require finalization, the total message // length must be programmed, including the length of previously hashed data // that corresponds to the written input digest. // // Non-final hash operations: // For hash operations that do not require finalization (input data length is // multiple of 512-bits which is SHA-256 data block size), the length field // does not need to be programmed since not used by the operation. // // If the message length in bits is below (2^32-1), then only HASHINLENL needs // to be written. The hardware automatically sets HASH_LENGTH_IN_H to 0s in // this case. // The host may write the length register at any time during the hash session // when the HASHIOBUFCTRL.RFD_IN is high. The length register must be written // before the last data of the active hash session is written into the hash // engine. // host read operations from these register locations will return 0s. // Note: When getting data from DMA, this register must be programmed before // DMA is programmed to start. #define CRYPTO_HASHINLENH_LENGTH_IN_W 32 #define CRYPTO_HASHINLENH_LENGTH_IN_M 0xFFFFFFFF #define CRYPTO_HASHINLENH_LENGTH_IN_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTA // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[31:0] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTA_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTA_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTA_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTB // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[63:32] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTB_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTB_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTB_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTC // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[95:64] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTC_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTC_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTC_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTD // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[127:96] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTD_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTD_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTD_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTE // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[159:128] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTE_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTE_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTE_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTF // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[191:160] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTF_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTF_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTF_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTG // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[223:192] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTG_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTG_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTG_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTH // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[255:224] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTH_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTH_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTH_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTI // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[287:256] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTI_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTI_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTI_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTJ // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[319:288] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTJ_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTJ_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTJ_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTK // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[351:320] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTK_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTK_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTK_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTL // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[383:352] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTL_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTL_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTL_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTM // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[415:384] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTM_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTM_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTM_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTN // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[447:416] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTN_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTN_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTN_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTO // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[479:448] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTO_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTO_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTO_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_HASHDIGESTP // //***************************************************************************** // Field: [31:0] HASH_DIGEST // // HASH_DIGEST[511:480] // Hash digest registers // Write operation: // // Continued hash: // These registers should be written with the context data, before the start of // a resumed hash session (the HASHMODE.NEW_HASH bit is 0 when starting a hash // session). // // New hash: // When initiating a new hash session (theHASHMODE.NEW_HASH bit is 1), the // internal digest registers are automatically set to the SHA-256 algorithm // constant and these register should not be written. // // Reading from these registers provides the intermediate hash result // (non-final hash operation) or the final hash result (final hash operation) // after data processing. #define CRYPTO_HASHDIGESTP_HASH_DIGEST_W 32 #define CRYPTO_HASHDIGESTP_HASH_DIGEST_M 0xFFFFFFFF #define CRYPTO_HASHDIGESTP_HASH_DIGEST_S 0 //***************************************************************************** // // Register: CRYPTO_O_ALGSEL // //***************************************************************************** // Field: [32] HASH_SHA_512 // // If set to one, selects the hash engine in 512B mode as destination for the // DMA // The maximum transfer size to DMA engine is set to 64 bytes for reading and // 32 bytes for writing (the latter is only applicable if the hash result is // written out through the DMA). #define CRYPTO_ALGSEL_HASH_SHA_512 0x100000000 #define CRYPTO_ALGSEL_HASH_SHA_512_BITN 32 #define CRYPTO_ALGSEL_HASH_SHA_512_M 0x100000000 #define CRYPTO_ALGSEL_HASH_SHA_512_S 32 // Field: [31] TAG // // If this bit is cleared to 0, the DMA operation involves only data. // If this bit is set, the DMA operation includes a TAG (Authentication Result // / Digest). // For SHA-256 operation, a DMA must be set up for both input data and TAG. For // any other selected module, setting this bit only allows a DMA that reads the // TAG. No data allowed to be transferred to or from the selected module via // the DMA. #define CRYPTO_ALGSEL_TAG 0x80000000 #define CRYPTO_ALGSEL_TAG_BITN 31 #define CRYPTO_ALGSEL_TAG_M 0x80000000 #define CRYPTO_ALGSEL_TAG_S 31 // Field: [2] HASH_SHA_256 // // If set to one, selects the hash engine in 256B mode as destination for the // DMA // The maximum transfer size to DMA engine is set to 64 bytes for reading and // 32 bytes for writing (the latter is only applicable if the hash result is // written out through the DMA). #define CRYPTO_ALGSEL_HASH_SHA_256 0x00000004 #define CRYPTO_ALGSEL_HASH_SHA_256_BITN 2 #define CRYPTO_ALGSEL_HASH_SHA_256_M 0x00000004 #define CRYPTO_ALGSEL_HASH_SHA_256_S 2 // Field: [1] AES // // If set to one, selects the AES engine as source/destination for the DMA // The read and write maximum transfer size to the DMA engine is set to 16 // bytes. #define CRYPTO_ALGSEL_AES 0x00000002 #define CRYPTO_ALGSEL_AES_BITN 1 #define CRYPTO_ALGSEL_AES_M 0x00000002 #define CRYPTO_ALGSEL_AES_S 1 // Field: [0] KEY_STORE // // If set to one, selects the Key Store as destination for the DMA // The maximum transfer size to DMA engine is set to 32 bytes (however // transfers of 16, 24 and 32 bytes are allowed) #define CRYPTO_ALGSEL_KEY_STORE 0x00000001 #define CRYPTO_ALGSEL_KEY_STORE_BITN 0 #define CRYPTO_ALGSEL_KEY_STORE_M 0x00000001 #define CRYPTO_ALGSEL_KEY_STORE_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMAPROTCTL // //***************************************************************************** // Field: [0] PROT_EN // // Select AHB transfer protection control for DMA transfers using the key store // area as destination. // 0 : transfers use 'USER' type access. // 1 : transfers use 'PRIVILEGED' type access. #define CRYPTO_DMAPROTCTL_PROT_EN 0x00000001 #define CRYPTO_DMAPROTCTL_PROT_EN_BITN 0 #define CRYPTO_DMAPROTCTL_PROT_EN_M 0x00000001 #define CRYPTO_DMAPROTCTL_PROT_EN_S 0 //***************************************************************************** // // Register: CRYPTO_O_SWRESET // //***************************************************************************** // Field: [0] SW_RESET // // If this bit is set to 1, the following modules are reset: // - Master control internal state is reset. That includes interrupt, error // status register, and result available interrupt generation FSM. // - Key store module state is reset. That includes clearing the written area // flags; therefore, the keys must be reloaded to the key store module. // Writing 0 has no effect. // The bit is self cleared after executing the reset. #define CRYPTO_SWRESET_SW_RESET 0x00000001 #define CRYPTO_SWRESET_SW_RESET_BITN 0 #define CRYPTO_SWRESET_SW_RESET_M 0x00000001 #define CRYPTO_SWRESET_SW_RESET_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQTYPE // //***************************************************************************** // Field: [0] LEVEL // // If this bit is 0, the interrupt output is a pulse. // If this bit is set to 1, the interrupt is a level interrupt that must be // cleared by writing the interrupt clear register. // This bit is applicable for both interrupt output signals. #define CRYPTO_IRQTYPE_LEVEL 0x00000001 #define CRYPTO_IRQTYPE_LEVEL_BITN 0 #define CRYPTO_IRQTYPE_LEVEL_M 0x00000001 #define CRYPTO_IRQTYPE_LEVEL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQEN // //***************************************************************************** // Field: [1] DMA_IN_DONE // // If this bit is set to 0, the DMA input done (irq_dma_in_done) interrupt // output is disabled and remains 0. // If this bit is set to 1, the DMA input done interrupt output is enabled. #define CRYPTO_IRQEN_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQEN_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQEN_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQEN_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // If this bit is set to 0, the result available (irq_result_av) interrupt // output is disabled and remains 0. // If this bit is set to 1, the result available interrupt output is enabled. #define CRYPTO_IRQEN_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQEN_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQEN_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQEN_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQCLR // //***************************************************************************** // Field: [31] DMA_BUS_ERR // // If 1 is written to this bit, the DMA bus error status is cleared. // Writing 0 has no effect. #define CRYPTO_IRQCLR_DMA_BUS_ERR 0x80000000 #define CRYPTO_IRQCLR_DMA_BUS_ERR_BITN 31 #define CRYPTO_IRQCLR_DMA_BUS_ERR_M 0x80000000 #define CRYPTO_IRQCLR_DMA_BUS_ERR_S 31 // Field: [30] KEY_ST_WR_ERR // // If 1 is written to this bit, the key store write error status is cleared. // Writing 0 has no effect. #define CRYPTO_IRQCLR_KEY_ST_WR_ERR 0x40000000 #define CRYPTO_IRQCLR_KEY_ST_WR_ERR_BITN 30 #define CRYPTO_IRQCLR_KEY_ST_WR_ERR_M 0x40000000 #define CRYPTO_IRQCLR_KEY_ST_WR_ERR_S 30 // Field: [29] KEY_ST_RD_ERR // // If 1 is written to this bit, the key store read error status is cleared. // Writing 0 has no effect. #define CRYPTO_IRQCLR_KEY_ST_RD_ERR 0x20000000 #define CRYPTO_IRQCLR_KEY_ST_RD_ERR_BITN 29 #define CRYPTO_IRQCLR_KEY_ST_RD_ERR_M 0x20000000 #define CRYPTO_IRQCLR_KEY_ST_RD_ERR_S 29 // Field: [1] DMA_IN_DONE // // If 1 is written to this bit, the DMA in done (irq_dma_in_done) interrupt // output is cleared. // Writing 0 has no effect. // Note that clearing an interrupt makes sense only if the interrupt output is // programmed as level (refer to IRQTYPE). #define CRYPTO_IRQCLR_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQCLR_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQCLR_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQCLR_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // If 1 is written to this bit, the result available (irq_result_av) interrupt // output is cleared. // Writing 0 has no effect. // Note that clearing an interrupt makes sense only if the interrupt output is // programmed as level (refer to IRQTYPE). #define CRYPTO_IRQCLR_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQCLR_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQCLR_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQCLR_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQSET // //***************************************************************************** // Field: [1] DMA_IN_DONE // // If 1 is written to this bit, the DMA data in done (irq_dma_in_done) // interrupt output is set to one. // Writing 0 has no effect. // If the interrupt configuration register is programmed to pulse, clearing the // DMA data in done (irq_dma_in_done) interrupt is not needed. If it is // programmed to level, clearing the interrupt output should be done by writing // the interrupt clear register (IRQCLR.DMA_IN_DONE). #define CRYPTO_IRQSET_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQSET_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQSET_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQSET_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // If 1 is written to this bit, the result available (irq_result_av) interrupt // output is set to one. // Writing 0 has no effect. // If the interrupt configuration register is programmed to pulse, clearing the // result available (irq_result_av) interrupt is not needed. If it is // programmed to level, clearing the interrupt output should be done by writing // the interrupt clear register (IRQCLR.RESULT_AVAIL). #define CRYPTO_IRQSET_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQSET_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQSET_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQSET_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQSTAT // //***************************************************************************** // Field: [31] DMA_BUS_ERR // // This bit is set when a DMA bus error is detected during a DMA operation. The // value of this register is held until it is cleared through the // IRQCLR.DMA_BUS_ERR // Note: This error is asserted if an error is detected on the AHB master // interface during a DMA operation. #define CRYPTO_IRQSTAT_DMA_BUS_ERR 0x80000000 #define CRYPTO_IRQSTAT_DMA_BUS_ERR_BITN 31 #define CRYPTO_IRQSTAT_DMA_BUS_ERR_M 0x80000000 #define CRYPTO_IRQSTAT_DMA_BUS_ERR_S 31 // Field: [30] KEY_ST_WR_ERR // // This bit is set when a write error is detected during the DMA write // operation to the key store memory. The value of this register is held until // it is cleared through the IRQCLR.KEY_ST_WR_ERR register. // Note: This error is asserted if a DMA operation does not cover a full key // area or more areas are written than expected. #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR 0x40000000 #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR_BITN 30 #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR_M 0x40000000 #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR_S 30 // Field: [29] KEY_ST_RD_ERR // // This bit is set when a read error is detected during the read of a key from // the key store, while copying it to the AES core. The value of this register // is held until it is cleared through the IRQCLR.KEY_ST_RD_ERR register. // Note: This error is asserted if a key location is selected in the key store // that is not available. #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR 0x20000000 #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR_BITN 29 #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR_M 0x20000000 #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR_S 29 // Field: [1] DMA_IN_DONE // // This read only bit returns the actual DMA data in done (irq_data_in_done) // interrupt status of the DMA data in done interrupt output pin // (irq_data_in_done). #define CRYPTO_IRQSTAT_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQSTAT_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQSTAT_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQSTAT_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // This read only bit returns the actual result available (irq_result_av) // interrupt status of the result available interrupt output pin // (irq_result_av). #define CRYPTO_IRQSTAT_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQSTAT_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQSTAT_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQSTAT_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_HWVER // //***************************************************************************** // Field: [27:24] HW_MAJOR_VER // // Major version number #define CRYPTO_HWVER_HW_MAJOR_VER_W 4 #define CRYPTO_HWVER_HW_MAJOR_VER_M 0x0F000000 #define CRYPTO_HWVER_HW_MAJOR_VER_S 24 // Field: [23:20] HW_MINOR_VER // // Minor version number #define CRYPTO_HWVER_HW_MINOR_VER_W 4 #define CRYPTO_HWVER_HW_MINOR_VER_M 0x00F00000 #define CRYPTO_HWVER_HW_MINOR_VER_S 20 // Field: [19:16] HW_PATCH_LVL // // Patch level // Starts at 0 at first delivery of this version #define CRYPTO_HWVER_HW_PATCH_LVL_W 4 #define CRYPTO_HWVER_HW_PATCH_LVL_M 0x000F0000 #define CRYPTO_HWVER_HW_PATCH_LVL_S 16 // Field: [15:8] VER_NUM_COMPL // // These bits simply contain the complement of bits [7:0] (0x87), used by a // driver to ascertain that the EIP-120t register is indeed read. #define CRYPTO_HWVER_VER_NUM_COMPL_W 8 #define CRYPTO_HWVER_VER_NUM_COMPL_M 0x0000FF00 #define CRYPTO_HWVER_VER_NUM_COMPL_S 8 // Field: [7:0] VER_NUM // // These bits encode the EIP number for the EIP-120t, this field contains the // value 120 (decimal) or 0x78. #define CRYPTO_HWVER_VER_NUM_W 8 #define CRYPTO_HWVER_VER_NUM_M 0x000000FF #define CRYPTO_HWVER_VER_NUM_S 0 #endif // __CRYPTO__