knx/examples/knxPython/pybind11/tests/test_callbacks.cpp
Thomas Kunze 1c6d772056 astyle
2024-09-14 11:56:47 +02:00

389 lines
11 KiB
C++

/*
tests/test_callbacks.cpp -- callbacks
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include <pybind11/functional.h>
#include "constructor_stats.h"
#include "pybind11_tests.h"
#include <thread>
int dummy_function(int i)
{
return i + 1;
}
TEST_SUBMODULE(callbacks, m)
{
// test_callbacks, test_function_signatures
m.def("test_callback1", [](const py::object & func)
{
return func();
});
m.def("test_callback2", [](const py::object & func)
{
return func("Hello", 'x', true, 5);
});
m.def("test_callback3", [](const std::function<int(int)>& func)
{
return "func(43) = " + std::to_string(func(43));
});
m.def("test_callback4",
[]() -> std::function<int(int)> { return [](int i)
{
return i + 1;
};
});
m.def("test_callback5",
[]()
{
return py::cpp_function([](int i)
{
return i + 1;
}, py::arg("number"));
});
// test_keyword_args_and_generalized_unpacking
m.def("test_tuple_unpacking", [](const py::function & f)
{
auto t1 = py::make_tuple(2, 3);
auto t2 = py::make_tuple(5, 6);
return f("positional", 1, *t1, 4, *t2);
});
m.def("test_dict_unpacking", [](const py::function & f)
{
auto d1 = py::dict("key"_a = "value", "a"_a = 1);
auto d2 = py::dict();
auto d3 = py::dict("b"_a = 2);
return f("positional", 1, **d1, **d2, **d3);
});
m.def("test_keyword_args", [](const py::function & f)
{
return f("x"_a = 10, "y"_a = 20);
});
m.def("test_unpacking_and_keywords1", [](const py::function & f)
{
auto args = py::make_tuple(2);
auto kwargs = py::dict("d"_a = 4);
return f(1, *args, "c"_a = 3, **kwargs);
});
m.def("test_unpacking_and_keywords2", [](const py::function & f)
{
auto kwargs1 = py::dict("a"_a = 1);
auto kwargs2 = py::dict("c"_a = 3, "d"_a = 4);
return f("positional",
*py::make_tuple(1),
2,
*py::make_tuple(3, 4),
5,
"key"_a = "value",
**kwargs1,
"b"_a = 2,
**kwargs2,
"e"_a = 5);
});
m.def("test_unpacking_error1", [](const py::function & f)
{
auto kwargs = py::dict("x"_a = 3);
return f("x"_a = 1, "y"_a = 2, **kwargs); // duplicate ** after keyword
});
m.def("test_unpacking_error2", [](const py::function & f)
{
auto kwargs = py::dict("x"_a = 3);
return f(**kwargs, "x"_a = 1); // duplicate keyword after **
});
m.def("test_arg_conversion_error1",
[](const py::function & f)
{
f(234, UnregisteredType(), "kw"_a = 567);
});
m.def("test_arg_conversion_error2", [](const py::function & f)
{
f(234, "expected_name"_a = UnregisteredType(), "kw"_a = 567);
});
// test_lambda_closure_cleanup
struct Payload
{
Payload()
{
print_default_created(this);
}
~Payload()
{
print_destroyed(this);
}
Payload(const Payload&)
{
print_copy_created(this);
}
Payload(Payload&&) noexcept
{
print_move_created(this);
}
};
// Export the payload constructor statistics for testing purposes:
m.def("payload_cstats", &ConstructorStats::get<Payload>);
m.def("test_lambda_closure_cleanup", []() -> std::function<void()>
{
Payload p;
// In this situation, `Func` in the implementation of
// `cpp_function::initialize` is NOT trivially destructible.
return [p]()
{
/* p should be cleaned up when the returned function is garbage collected */
(void) p;
};
});
class CppCallable
{
public:
CppCallable()
{
track_default_created(this);
}
~CppCallable()
{
track_destroyed(this);
}
CppCallable(const CppCallable&)
{
track_copy_created(this);
}
CppCallable(CppCallable&&) noexcept
{
track_move_created(this);
}
void operator()() {}
};
m.def("test_cpp_callable_cleanup", []()
{
// Related issue: https://github.com/pybind/pybind11/issues/3228
// Related PR: https://github.com/pybind/pybind11/pull/3229
py::list alive_counts;
ConstructorStats& stat = ConstructorStats::get<CppCallable>();
alive_counts.append(stat.alive());
{
CppCallable cpp_callable;
alive_counts.append(stat.alive());
{
// In this situation, `Func` in the implementation of
// `cpp_function::initialize` IS trivially destructible,
// only `capture` is not.
py::cpp_function py_func(cpp_callable);
py::detail::silence_unused_warnings(py_func);
alive_counts.append(stat.alive());
}
alive_counts.append(stat.alive());
{
py::cpp_function py_func(std::move(cpp_callable));
py::detail::silence_unused_warnings(py_func);
alive_counts.append(stat.alive());
}
alive_counts.append(stat.alive());
}
alive_counts.append(stat.alive());
return alive_counts;
});
// test_cpp_function_roundtrip
/* Test if passing a function pointer from C++ -> Python -> C++ yields the original pointer */
m.def("dummy_function", &dummy_function);
m.def("dummy_function_overloaded", [](int i, int j)
{
return i + j;
});
m.def("dummy_function_overloaded", &dummy_function);
m.def("dummy_function2", [](int i, int j)
{
return i + j;
});
m.def(
"roundtrip",
[](std::function<int(int)> f, bool expect_none = false)
{
if (expect_none && f)
{
throw std::runtime_error("Expected None to be converted to empty std::function");
}
return f;
},
py::arg("f"),
py::arg("expect_none") = false);
m.def("test_dummy_function", [](const std::function<int(int)>& f) -> std::string
{
using fn_type = int (*)(int);
const auto* result = f.target<fn_type>();
if (!result)
{
auto r = f(1);
return "can't convert to function pointer: eval(1) = " + std::to_string(r);
}
if (*result == dummy_function)
{
auto r = (*result)
(1);
return "matches dummy_function: eval(1) = " + std::to_string(r);
}
return "argument does NOT match dummy_function. This should never happen!";
});
class AbstractBase
{
public:
// [workaround(intel)] = default does not work here
// Defaulting this destructor results in linking errors with the Intel compiler
// (in Debug builds only, tested with icpc (ICC) 2021.1 Beta 20200827)
virtual ~AbstractBase() {} // NOLINT(modernize-use-equals-default)
virtual unsigned int func() = 0;
};
m.def("func_accepting_func_accepting_base",
[](const std::function<double(AbstractBase&)>&) {});
struct MovableObject
{
bool valid = true;
MovableObject() = default;
MovableObject(const MovableObject&) = default;
MovableObject& operator=(const MovableObject&) = default;
MovableObject(MovableObject&& o) noexcept : valid(o.valid)
{
o.valid = false;
}
MovableObject& operator=(MovableObject&& o) noexcept
{
valid = o.valid;
o.valid = false;
return *this;
}
};
py::class_<MovableObject>(m, "MovableObject");
// test_movable_object
m.def("callback_with_movable", [](const std::function<void(MovableObject&)>& f)
{
auto x = MovableObject();
f(x); // lvalue reference shouldn't move out object
return x.valid; // must still return `true`
});
// test_bound_method_callback
struct CppBoundMethodTest {};
py::class_<CppBoundMethodTest>(m, "CppBoundMethodTest")
.def(py::init<>())
.def("triple", [](CppBoundMethodTest&, int val)
{
return 3 * val;
});
// This checks that builtin functions can be passed as callbacks
// rather than throwing RuntimeError due to trying to extract as capsule
m.def("test_sum_builtin",
[](const std::function<double(py::iterable)>& sum_builtin, const py::iterable & i)
{
return sum_builtin(i);
});
// test async Python callbacks
using callback_f = std::function<void(int)>;
m.def("test_async_callback", [](const callback_f & f, const py::list & work)
{
// make detached thread that calls `f` with piece of work after a little delay
auto start_f = [f](int j)
{
auto invoke_f = [f, j]
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
f(j);
};
auto t = std::thread(std::move(invoke_f));
t.detach();
};
// spawn worker threads
for (auto i : work)
{
start_f(py::cast<int>(i));
}
});
m.def("callback_num_times", [](const py::function & f, std::size_t num)
{
for (std::size_t i = 0; i < num; i++)
{
f();
}
});
auto* custom_def = []()
{
static PyMethodDef def;
def.ml_name = "example_name";
def.ml_doc = "Example doc";
def.ml_meth = [](PyObject*, PyObject * args) -> PyObject *
{
if (PyTuple_Size(args) != 1)
{
throw std::runtime_error("Invalid number of arguments for example_name");
}
PyObject* first = PyTuple_GetItem(args, 0);
if (!PyLong_Check(first))
{
throw std::runtime_error("Invalid argument to example_name");
}
auto result = py::cast(PyLong_AsLong(first) * 9);
return result.release().ptr();
};
def.ml_flags = METH_VARARGS;
return &def;
}
();
// rec_capsule with name that has the same value (but not pointer) as our internal one
// This capsule should be detected by our code as foreign and not inspected as the pointers
// shouldn't match
constexpr const char* rec_capsule_name
= pybind11::detail::internals_function_record_capsule_name;
py::capsule rec_capsule(std::malloc(1), [](void* data)
{
std::free(data);
});
rec_capsule.set_name(rec_capsule_name);
m.add_object("custom_function", PyCFunction_New(custom_def, rec_capsule.ptr()));
// This test requires a new ABI version to pass
#if PYBIND11_INTERNALS_VERSION > 4
// rec_capsule with nullptr name
py::capsule rec_capsule2(std::malloc(1), [](void* data)
{
std::free(data);
});
m.add_object("custom_function2", PyCFunction_New(custom_def, rec_capsule2.ptr()));
#else
m.add_object("custom_function2", py::none());
#endif
}