knx/examples/knxPython/pybind11/tests/test_smart_ptr.cpp
Thomas Kunze 1c6d772056 astyle
2024-09-14 11:56:47 +02:00

752 lines
22 KiB
C++

/*
tests/test_smart_ptr.cpp -- binding classes with custom reference counting,
implicit conversions between types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "object.h"
#include "pybind11_tests.h"
namespace
{
// This is just a wrapper around unique_ptr, but with extra fields to deliberately bloat up the
// holder size to trigger the non-simple-layout internal instance layout for single inheritance
// with large holder type:
template <typename T>
class huge_unique_ptr
{
std::unique_ptr<T> ptr;
uint64_t padding[10];
public:
explicit huge_unique_ptr(T* p) : ptr(p) {}
T* get()
{
return ptr.get();
}
};
// Simple custom holder that works like unique_ptr
template <typename T>
class custom_unique_ptr
{
std::unique_ptr<T> impl;
public:
explicit custom_unique_ptr(T* p) : impl(p) {}
T* get() const
{
return impl.get();
}
T* release_ptr()
{
return impl.release();
}
};
// Simple custom holder that works like shared_ptr and has operator& overload
// To obtain address of an instance of this holder pybind should use std::addressof
// Attempt to get address via operator& may leads to segmentation fault
template <typename T>
class shared_ptr_with_addressof_operator
{
std::shared_ptr<T> impl;
public:
shared_ptr_with_addressof_operator() = default;
explicit shared_ptr_with_addressof_operator(T* p) : impl(p) {}
T* get() const
{
return impl.get();
}
T** operator&()
{
throw std::logic_error("Call of overloaded operator& is not expected");
}
};
// Simple custom holder that works like unique_ptr and has operator& overload
// To obtain address of an instance of this holder pybind should use std::addressof
// Attempt to get address via operator& may leads to segmentation fault
template <typename T>
class unique_ptr_with_addressof_operator
{
std::unique_ptr<T> impl;
public:
unique_ptr_with_addressof_operator() = default;
explicit unique_ptr_with_addressof_operator(T* p) : impl(p) {}
T* get() const
{
return impl.get();
}
T* release_ptr()
{
return impl.release();
}
T** operator&()
{
throw std::logic_error("Call of overloaded operator& is not expected");
}
};
// Custom object with builtin reference counting (see 'object.h' for the implementation)
class MyObject1 : public Object
{
public:
explicit MyObject1(int value) : value(value)
{
print_created(this, toString());
}
std::string toString() const override
{
return "MyObject1[" + std::to_string(value) + "]";
}
protected:
~MyObject1() override
{
print_destroyed(this);
}
private:
int value;
};
// Object managed by a std::shared_ptr<>
class MyObject2
{
public:
MyObject2(const MyObject2&) = default;
explicit MyObject2(int value) : value(value)
{
print_created(this, toString());
}
std::string toString() const
{
return "MyObject2[" + std::to_string(value) + "]";
}
virtual ~MyObject2()
{
print_destroyed(this);
}
private:
int value;
};
// Object managed by a std::shared_ptr<>, additionally derives from std::enable_shared_from_this<>
class MyObject3 : public std::enable_shared_from_this<MyObject3>
{
public:
MyObject3(const MyObject3&) = default;
explicit MyObject3(int value) : value(value)
{
print_created(this, toString());
}
std::string toString() const
{
return "MyObject3[" + std::to_string(value) + "]";
}
virtual ~MyObject3()
{
print_destroyed(this);
}
private:
int value;
};
template <typename T>
std::unordered_set<T*>& pointer_set()
{
// https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
static auto singleton = new std::unordered_set<T*>();
return *singleton;
}
// test_unique_nodelete
// Object with a private destructor
class MyObject4
{
public:
explicit MyObject4(int value) : value{value}
{
print_created(this);
pointer_set<MyObject4>().insert(this);
}
int value;
static void cleanupAllInstances()
{
auto tmp = std::move(pointer_set<MyObject4>());
pointer_set<MyObject4>().clear();
for (auto* o : tmp)
{
delete o;
}
}
private:
~MyObject4()
{
pointer_set<MyObject4>().erase(this);
print_destroyed(this);
}
};
// test_unique_deleter
// Object with std::unique_ptr<T, D> where D is not matching the base class
// Object with a protected destructor
class MyObject4a
{
public:
explicit MyObject4a(int i) : value{i}
{
print_created(this);
pointer_set<MyObject4a>().insert(this);
};
int value;
static void cleanupAllInstances()
{
auto tmp = std::move(pointer_set<MyObject4a>());
pointer_set<MyObject4a>().clear();
for (auto* o : tmp)
{
delete o;
}
}
protected:
virtual ~MyObject4a()
{
pointer_set<MyObject4a>().erase(this);
print_destroyed(this);
}
};
// Object derived but with public destructor and no Deleter in default holder
class MyObject4b : public MyObject4a
{
public:
explicit MyObject4b(int i) : MyObject4a(i)
{
print_created(this);
}
~MyObject4b() override
{
print_destroyed(this);
}
};
// test_large_holder
class MyObject5 // managed by huge_unique_ptr
{
public:
explicit MyObject5(int value) : value{value}
{
print_created(this);
}
~MyObject5()
{
print_destroyed(this);
}
int value;
};
// test_shared_ptr_and_references
struct SharedPtrRef
{
struct A
{
A()
{
print_created(this);
}
A(const A&)
{
print_copy_created(this);
}
A(A&&) noexcept
{
print_move_created(this);
}
~A()
{
print_destroyed(this);
}
};
A value = {};
std::shared_ptr<A> shared = std::make_shared<A>();
};
// test_shared_ptr_from_this_and_references
struct SharedFromThisRef
{
struct B : std::enable_shared_from_this<B>
{
B()
{
print_created(this);
}
// NOLINTNEXTLINE(bugprone-copy-constructor-init)
B(const B&) : std::enable_shared_from_this<B>()
{
print_copy_created(this);
}
B(B&&) noexcept : std::enable_shared_from_this<B>()
{
print_move_created(this);
}
~B()
{
print_destroyed(this);
}
};
B value = {};
std::shared_ptr<B> shared = std::make_shared<B>();
};
// Issue #865: shared_from_this doesn't work with virtual inheritance
struct SharedFromThisVBase : std::enable_shared_from_this<SharedFromThisVBase>
{
SharedFromThisVBase() = default;
SharedFromThisVBase(const SharedFromThisVBase&) = default;
virtual ~SharedFromThisVBase() = default;
};
struct SharedFromThisVirt : virtual SharedFromThisVBase {};
// test_move_only_holder
struct C
{
C()
{
print_created(this);
}
~C()
{
print_destroyed(this);
}
};
// test_holder_with_addressof_operator
struct TypeForHolderWithAddressOf
{
TypeForHolderWithAddressOf()
{
print_created(this);
}
TypeForHolderWithAddressOf(const TypeForHolderWithAddressOf&)
{
print_copy_created(this);
}
TypeForHolderWithAddressOf(TypeForHolderWithAddressOf&&) noexcept
{
print_move_created(this);
}
~TypeForHolderWithAddressOf()
{
print_destroyed(this);
}
std::string toString() const
{
return "TypeForHolderWithAddressOf[" + std::to_string(value) + "]";
}
int value = 42;
};
// test_move_only_holder_with_addressof_operator
struct TypeForMoveOnlyHolderWithAddressOf
{
explicit TypeForMoveOnlyHolderWithAddressOf(int value) : value{value}
{
print_created(this);
}
~TypeForMoveOnlyHolderWithAddressOf()
{
print_destroyed(this);
}
std::string toString() const
{
return "MoveOnlyHolderWithAddressOf[" + std::to_string(value) + "]";
}
int value;
};
// test_smart_ptr_from_default
struct HeldByDefaultHolder {};
// test_shared_ptr_gc
// #187: issue involving std::shared_ptr<> return value policy & garbage collection
struct ElementBase
{
virtual ~ElementBase() = default; /* Force creation of virtual table */
ElementBase() = default;
ElementBase(const ElementBase&) = delete;
};
struct ElementA : ElementBase
{
explicit ElementA(int v) : v(v) {}
int value() const
{
return v;
}
int v;
};
struct ElementList
{
void add(const std::shared_ptr<ElementBase>& e)
{
l.push_back(e);
}
std::vector<std::shared_ptr<ElementBase>> l;
};
} // namespace
// ref<T> is a wrapper for 'Object' which uses intrusive reference counting
// It is always possible to construct a ref<T> from an Object* pointer without
// possible inconsistencies, hence the 'true' argument at the end.
// Make pybind11 aware of the non-standard getter member function
namespace PYBIND11_NAMESPACE
{
namespace detail
{
template <typename T>
struct holder_helper<ref<T>>
{
static const T* get(const ref<T>& p)
{
return p.get_ptr();
}
};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
// Make pybind aware of the ref-counted wrapper type (s):
PYBIND11_DECLARE_HOLDER_TYPE(T, ref<T>, true);
// The following is not required anymore for std::shared_ptr, but it should compile without error:
PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, huge_unique_ptr<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, custom_unique_ptr<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, shared_ptr_with_addressof_operator<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, unique_ptr_with_addressof_operator<T>);
TEST_SUBMODULE(smart_ptr, m)
{
// Please do not interleave `struct` and `class` definitions with bindings code,
// but implement `struct`s and `class`es in the anonymous namespace above.
// This helps keeping the smart_holder branch in sync with master.
// test_smart_ptr
// Object implementation in `object.h`
py::class_<Object, ref<Object>> obj(m, "Object");
obj.def("getRefCount", &Object::getRefCount);
py::class_<MyObject1, ref<MyObject1>>(m, "MyObject1", obj).def(py::init<int>());
py::implicitly_convertible<py::int_, MyObject1>();
m.def("make_object_1", []() -> Object * { return new MyObject1(1); });
m.def("make_object_2", []() -> ref<Object> { return ref<Object>(new MyObject1(2)); });
m.def("make_myobject1_1", []() -> MyObject1 * { return new MyObject1(4); });
m.def("make_myobject1_2", []() -> ref<MyObject1> { return ref<MyObject1>(new MyObject1(5)); });
m.def("print_object_1", [](const Object * obj)
{
py::print(obj->toString());
});
m.def("print_object_2", [](ref<Object> obj)
{
py::print(obj->toString());
});
m.def("print_object_3", [](const ref<Object>& obj)
{
py::print(obj->toString());
});
m.def("print_object_4", [](const ref<Object>* obj)
{
py::print((*obj)->toString());
});
m.def("print_myobject1_1", [](const MyObject1 * obj)
{
py::print(obj->toString());
});
m.def("print_myobject1_2", [](ref<MyObject1> obj)
{
py::print(obj->toString());
});
m.def("print_myobject1_3", [](const ref<MyObject1>& obj)
{
py::print(obj->toString());
});
m.def("print_myobject1_4", [](const ref<MyObject1>* obj)
{
py::print((*obj)->toString());
});
// Expose constructor stats for the ref type
m.def("cstats_ref", &ConstructorStats::get<ref_tag>);
py::class_<MyObject2, std::shared_ptr<MyObject2>>(m, "MyObject2").def(py::init<int>());
m.def("make_myobject2_1", []()
{
return new MyObject2(6);
});
m.def("make_myobject2_2", []()
{
return std::make_shared<MyObject2>(7);
});
m.def("print_myobject2_1", [](const MyObject2 * obj)
{
py::print(obj->toString());
});
// NOLINTNEXTLINE(performance-unnecessary-value-param)
m.def("print_myobject2_2", [](std::shared_ptr<MyObject2> obj)
{
py::print(obj->toString());
});
m.def("print_myobject2_3",
[](const std::shared_ptr<MyObject2>& obj)
{
py::print(obj->toString());
});
m.def("print_myobject2_4",
[](const std::shared_ptr<MyObject2>* obj)
{
py::print((*obj)->toString());
});
py::class_<MyObject3, std::shared_ptr<MyObject3>>(m, "MyObject3").def(py::init<int>());
m.def("make_myobject3_1", []()
{
return new MyObject3(8);
});
m.def("make_myobject3_2", []()
{
return std::make_shared<MyObject3>(9);
});
m.def("print_myobject3_1", [](const MyObject3 * obj)
{
py::print(obj->toString());
});
// NOLINTNEXTLINE(performance-unnecessary-value-param)
m.def("print_myobject3_2", [](std::shared_ptr<MyObject3> obj)
{
py::print(obj->toString());
});
m.def("print_myobject3_3",
[](const std::shared_ptr<MyObject3>& obj)
{
py::print(obj->toString());
});
m.def("print_myobject3_4",
[](const std::shared_ptr<MyObject3>* obj)
{
py::print((*obj)->toString());
});
// test_smart_ptr_refcounting
m.def("test_object1_refcounting", []()
{
auto o = ref<MyObject1>(new MyObject1(0));
bool good = o->getRefCount() == 1;
py::object o2 = py::cast(o, py::return_value_policy::reference);
// always request (partial) ownership for objects with intrusive
// reference counting even when using the 'reference' RVP
good &= o->getRefCount() == 2;
return good;
});
// test_unique_nodelete
py::class_<MyObject4, std::unique_ptr<MyObject4, py::nodelete>>(m, "MyObject4")
.def(py::init<int>())
.def_readwrite("value", &MyObject4::value)
.def_static("cleanup_all_instances", &MyObject4::cleanupAllInstances);
// test_unique_deleter
py::class_<MyObject4a, std::unique_ptr<MyObject4a, py::nodelete>>(m, "MyObject4a")
.def(py::init<int>())
.def_readwrite("value", &MyObject4a::value)
.def_static("cleanup_all_instances", &MyObject4a::cleanupAllInstances);
py::class_<MyObject4b, MyObject4a, std::unique_ptr<MyObject4b>>(m, "MyObject4b")
.def(py::init<int>());
// test_large_holder
py::class_<MyObject5, huge_unique_ptr<MyObject5>>(m, "MyObject5")
.def(py::init<int>())
.def_readwrite("value", &MyObject5::value);
// test_shared_ptr_and_references
using A = SharedPtrRef::A;
py::class_<A, std::shared_ptr<A>>(m, "A");
py::class_<SharedPtrRef, std::unique_ptr<SharedPtrRef>>(m, "SharedPtrRef")
.def(py::init<>())
.def_readonly("ref", &SharedPtrRef::value)
.def_property_readonly(
"copy", [](const SharedPtrRef & s)
{
return s.value;
}, py::return_value_policy::copy)
.def_readonly("holder_ref", &SharedPtrRef::shared)
.def_property_readonly(
"holder_copy",
[](const SharedPtrRef & s)
{
return s.shared;
},
py::return_value_policy::copy)
.def("set_ref", [](SharedPtrRef&, const A&)
{
return true;
})
// NOLINTNEXTLINE(performance-unnecessary-value-param)
.def("set_holder", [](SharedPtrRef&, std::shared_ptr<A>)
{
return true;
});
// test_shared_ptr_from_this_and_references
using B = SharedFromThisRef::B;
py::class_<B, std::shared_ptr<B>>(m, "B");
py::class_<SharedFromThisRef, std::unique_ptr<SharedFromThisRef>>(m, "SharedFromThisRef")
.def(py::init<>())
.def_readonly("bad_wp", &SharedFromThisRef::value)
.def_property_readonly("ref",
[](const SharedFromThisRef & s) -> const B & { return *s.shared; })
.def_property_readonly(
"copy",
[](const SharedFromThisRef & s)
{
return s.value;
},
py::return_value_policy::copy)
.def_readonly("holder_ref", &SharedFromThisRef::shared)
.def_property_readonly(
"holder_copy",
[](const SharedFromThisRef & s)
{
return s.shared;
},
py::return_value_policy::copy)
.def("set_ref", [](SharedFromThisRef&, const B&)
{
return true;
})
// NOLINTNEXTLINE(performance-unnecessary-value-param)
.def("set_holder", [](SharedFromThisRef&, std::shared_ptr<B>)
{
return true;
});
// Issue #865: shared_from_this doesn't work with virtual inheritance
static std::shared_ptr<SharedFromThisVirt> sft(new SharedFromThisVirt());
py::class_<SharedFromThisVirt, std::shared_ptr<SharedFromThisVirt>>(m, "SharedFromThisVirt")
.def_static("get", []()
{
return sft.get();
});
// test_move_only_holder
py::class_<C, custom_unique_ptr<C>>(m, "TypeWithMoveOnlyHolder")
.def_static("make", []()
{
return custom_unique_ptr<C>(new C);
})
.def_static("make_as_object", []()
{
return py::cast(custom_unique_ptr<C>(new C));
});
// test_holder_with_addressof_operator
using HolderWithAddressOf = shared_ptr_with_addressof_operator<TypeForHolderWithAddressOf>;
py::class_<TypeForHolderWithAddressOf, HolderWithAddressOf>(m, "TypeForHolderWithAddressOf")
.def_static("make", []()
{
return HolderWithAddressOf(new TypeForHolderWithAddressOf);
})
.def("get", [](const HolderWithAddressOf & self)
{
return self.get();
})
.def("print_object_1",
[](const TypeForHolderWithAddressOf * obj)
{
py::print(obj->toString());
})
// NOLINTNEXTLINE(performance-unnecessary-value-param)
.def("print_object_2", [](HolderWithAddressOf obj)
{
py::print(obj.get()->toString());
})
.def("print_object_3",
[](const HolderWithAddressOf & obj)
{
py::print(obj.get()->toString());
})
.def("print_object_4",
[](const HolderWithAddressOf * obj)
{
py::print((*obj).get()->toString());
});
// test_move_only_holder_with_addressof_operator
using MoveOnlyHolderWithAddressOf
= unique_ptr_with_addressof_operator<TypeForMoveOnlyHolderWithAddressOf>;
py::class_<TypeForMoveOnlyHolderWithAddressOf, MoveOnlyHolderWithAddressOf>(
m, "TypeForMoveOnlyHolderWithAddressOf")
.def_static("make",
[]()
{
return MoveOnlyHolderWithAddressOf(
new TypeForMoveOnlyHolderWithAddressOf(0));
})
.def_readwrite("value", &TypeForMoveOnlyHolderWithAddressOf::value)
.def("print_object",
[](const TypeForMoveOnlyHolderWithAddressOf * obj)
{
py::print(obj->toString());
});
// test_smart_ptr_from_default
py::class_<HeldByDefaultHolder, std::unique_ptr<HeldByDefaultHolder>>(m, "HeldByDefaultHolder")
.def(py::init<>())
// NOLINTNEXTLINE(performance-unnecessary-value-param)
.def_static("load_shared_ptr", [](std::shared_ptr<HeldByDefaultHolder>) {});
// test_shared_ptr_gc
// #187: issue involving std::shared_ptr<> return value policy & garbage collection
py::class_<ElementBase, std::shared_ptr<ElementBase>>(m, "ElementBase");
py::class_<ElementA, ElementBase, std::shared_ptr<ElementA>>(m, "ElementA")
.def(py::init<int>())
.def("value", &ElementA::value);
py::class_<ElementList, std::shared_ptr<ElementList>>(m, "ElementList")
.def(py::init<>())
.def("add", &ElementList::add)
.def("get", [](ElementList & el)
{
py::list list;
for (auto& e : el.l)
{
list.append(py::cast(e));
}
return list;
});
}