knx/examples/knxPython/pybind11/tests/test_stl.cpp
Thomas Kunze 1c6d772056 astyle
2024-09-14 11:56:47 +02:00

737 lines
22 KiB
C++

/*
tests/test_stl.cpp -- STL type casters
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include <pybind11/stl.h>
#include "constructor_stats.h"
#include "pybind11_tests.h"
#ifndef PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL
#define PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL
#endif
#include <pybind11/stl/filesystem.h>
#include <string>
#include <vector>
#if defined(PYBIND11_TEST_BOOST)
# include <boost/optional.hpp>
namespace PYBIND11_NAMESPACE
{
namespace detail
{
template <typename T>
struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
template <>
struct type_caster<boost::none_t> : void_caster<boost::none_t> {};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
#endif
// Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14
#if defined(PYBIND11_HAS_VARIANT)
using std::variant;
# define PYBIND11_TEST_VARIANT 1
#elif defined(PYBIND11_TEST_BOOST)
# include <boost/variant.hpp>
# define PYBIND11_TEST_VARIANT 1
using boost::variant;
namespace PYBIND11_NAMESPACE
{
namespace detail
{
template <typename... Ts>
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
template <>
struct visit_helper<boost::variant>
{
template <typename... Args>
static auto call(Args&& ...args) -> decltype(boost::apply_visitor(args...))
{
return boost::apply_visitor(args...);
}
};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
#endif
PYBIND11_MAKE_OPAQUE(std::vector<std::string, std::allocator<std::string>>);
/// Issue #528: templated constructor
struct TplCtorClass
{
template <typename T>
explicit TplCtorClass(const T&) {}
bool operator==(const TplCtorClass&) const
{
return true;
}
};
namespace std
{
template <>
struct hash<TplCtorClass>
{
size_t operator()(const TplCtorClass&) const
{
return 0;
}
};
} // namespace std
template <template <typename> class OptionalImpl, typename T>
struct OptionalHolder
{
// NOLINTNEXTLINE(modernize-use-equals-default): breaks GCC 4.8
OptionalHolder() {};
bool member_initialized() const
{
return member && member->initialized;
}
OptionalImpl<T> member = T{};
};
enum class EnumType
{
kSet = 42,
kUnset = 85,
};
// This is used to test that return-by-ref and return-by-copy policies are
// handled properly for optional types. This is a regression test for a dangling
// reference issue. The issue seemed to require the enum value type to
// reproduce - it didn't seem to happen if the value type is just an integer.
template <template <typename> class OptionalImpl>
class OptionalProperties
{
public:
using OptionalEnumValue = OptionalImpl<EnumType>;
OptionalProperties() : value(EnumType::kSet) {}
~OptionalProperties()
{
// Reset value to detect use-after-destruction.
// This is set to a specific value rather than nullopt to ensure that
// the memory that contains the value gets re-written.
value = EnumType::kUnset;
}
OptionalEnumValue& access_by_ref()
{
return value;
}
OptionalEnumValue access_by_copy()
{
return value;
}
private:
OptionalEnumValue value;
};
// This type mimics aspects of boost::optional from old versions of Boost,
// which exposed a dangling reference bug in Pybind11. Recent versions of
// boost::optional, as well as libstdc++'s std::optional, don't seem to be
// affected by the same issue. This is meant to be a minimal implementation
// required to reproduce the issue, not fully standard-compliant.
// See issue #3330 for more details.
template <typename T>
class ReferenceSensitiveOptional
{
public:
using value_type = T;
ReferenceSensitiveOptional() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
ReferenceSensitiveOptional(const T& value) : storage{value} {}
// NOLINTNEXTLINE(google-explicit-constructor)
ReferenceSensitiveOptional(T&& value) : storage{std::move(value)} {}
ReferenceSensitiveOptional& operator=(const T& value)
{
storage = {value};
return *this;
}
ReferenceSensitiveOptional& operator=(T&& value)
{
storage = {std::move(value)};
return *this;
}
template <typename... Args>
T& emplace(Args&& ...args)
{
storage.clear();
storage.emplace_back(std::forward<Args>(args)...);
return storage.back();
}
const T& value() const noexcept
{
assert(!storage.empty());
return storage[0];
}
const T& operator*() const noexcept
{
return value();
}
const T* operator->() const noexcept
{
return &value();
}
explicit operator bool() const noexcept
{
return !storage.empty();
}
private:
std::vector<T> storage;
};
namespace PYBIND11_NAMESPACE
{
namespace detail
{
template <typename T>
struct type_caster<ReferenceSensitiveOptional<T>>
: optional_caster<ReferenceSensitiveOptional<T>> {};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
TEST_SUBMODULE(stl, m)
{
// test_vector
m.def("cast_vector", []()
{
return std::vector<int> {1};
});
m.def("load_vector", [](const std::vector<int>& v)
{
return v.at(0) == 1 && v.at(1) == 2;
});
// `std::vector<bool>` is special because it returns proxy objects instead of references
m.def("cast_bool_vector", []()
{
return std::vector<bool> {true, false};
});
m.def("load_bool_vector",
[](const std::vector<bool>& v)
{
return v.at(0) == true && v.at(1) == false;
});
// Unnumbered regression (caused by #936): pointers to stl containers aren't castable
m.def(
"cast_ptr_vector",
[]()
{
// Using no-destructor idiom to side-step warnings from overzealous compilers.
static auto* v = new std::vector<RValueCaster> {2};
return v;
},
py::return_value_policy::reference);
// test_deque
m.def("cast_deque", []()
{
return std::deque<int> {1};
});
m.def("load_deque", [](const std::deque<int>& v)
{
return v.at(0) == 1 && v.at(1) == 2;
});
// test_array
m.def("cast_array", []()
{
return std::array<int, 2> {{1, 2}};
});
m.def("load_array", [](const std::array<int, 2>& a)
{
return a[0] == 1 && a[1] == 2;
});
// test_valarray
m.def("cast_valarray", []()
{
return std::valarray<int> {1, 4, 9};
});
m.def("load_valarray", [](const std::valarray<int>& v)
{
return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9;
});
// test_map
m.def("cast_map", []()
{
return std::map<std::string, std::string> {{"key", "value"}};
});
m.def("load_map", [](const std::map<std::string, std::string>& map)
{
return map.at("key") == "value" && map.at("key2") == "value2";
});
// test_set
m.def("cast_set", []()
{
return std::set<std::string> {"key1", "key2"};
});
m.def("load_set", [](const std::set<std::string>& set)
{
return (set.count("key1") != 0u) && (set.count("key2") != 0u) && (set.count("key3") != 0u);
});
// test_recursive_casting
m.def("cast_rv_vector", []()
{
return std::vector<RValueCaster> {2};
});
m.def("cast_rv_array", []()
{
return std::array<RValueCaster, 3>();
});
// NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`),
// casters don't typically do anything with that, which means they fall to the `const Type &`
// caster.
m.def("cast_rv_map",
[]()
{
return std::unordered_map<std::string, RValueCaster> {{"a", RValueCaster{}}};
});
m.def("cast_rv_nested", []()
{
std::vector<std::array<std::list<std::unordered_map<std::string, RValueCaster>>, 2>> v;
v.emplace_back(); // add an array
v.back()[0].emplace_back(); // add a map to the array
v.back()[0].back().emplace("b", RValueCaster{});
v.back()[0].back().emplace("c", RValueCaster{});
v.back()[1].emplace_back(); // add a map to the array
v.back()[1].back().emplace("a", RValueCaster{});
return v;
});
static std::array<RValueCaster, 2> lva;
static std::unordered_map<std::string, RValueCaster> lvm{{"a", RValueCaster{}},
{"b", RValueCaster{}}};
static std::unordered_map<std::string, std::vector<std::list<std::array<RValueCaster, 2>>>>
lvn;
lvn["a"].emplace_back(); // add a list
lvn["a"].back().emplace_back(); // add an array
lvn["a"].emplace_back(); // another list
lvn["a"].back().emplace_back(); // add an array
lvn["b"].emplace_back(); // add a list
lvn["b"].back().emplace_back(); // add an array
lvn["b"].back().emplace_back(); // add another array
static std::vector<RValueCaster> lvv{2};
m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; });
m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; });
m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; });
m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; });
// #853:
m.def("cast_unique_ptr_vector", []()
{
std::vector<std::unique_ptr<UserType>> v;
v.emplace_back(new UserType{7});
v.emplace_back(new UserType{42});
return v;
});
pybind11::enum_<EnumType>(m, "EnumType")
.value("kSet", EnumType::kSet)
.value("kUnset", EnumType::kUnset);
// test_move_out_container
struct MoveOutContainer
{
struct Value
{
int value;
};
std::list<Value> move_list() const
{
return {{0}, {1}, {2}};
}
};
py::class_<MoveOutContainer::Value>(m, "MoveOutContainerValue")
.def_readonly("value", &MoveOutContainer::Value::value);
py::class_<MoveOutContainer>(m, "MoveOutContainer")
.def(py::init<>())
.def_property_readonly("move_list", &MoveOutContainer::move_list);
// Class that can be move- and copy-constructed, but not assigned
struct NoAssign
{
int value;
explicit NoAssign(int value = 0) : value(value) {}
NoAssign(const NoAssign&) = default;
NoAssign(NoAssign&&) = default;
NoAssign& operator=(const NoAssign&) = delete;
NoAssign& operator=(NoAssign&&) = delete;
};
py::class_<NoAssign>(m, "NoAssign", "Class with no C++ assignment operators")
.def(py::init<>())
.def(py::init<int>());
struct MoveOutDetector
{
MoveOutDetector() = default;
MoveOutDetector(const MoveOutDetector&) = default;
MoveOutDetector(MoveOutDetector&& other) noexcept : initialized(other.initialized)
{
// steal underlying resource
other.initialized = false;
}
bool initialized = true;
};
py::class_<MoveOutDetector>(m, "MoveOutDetector", "Class with move tracking")
.def(py::init<>())
.def_readonly("initialized", &MoveOutDetector::initialized);
#ifdef PYBIND11_HAS_OPTIONAL
// test_optional
m.attr("has_optional") = true;
using opt_int = std::optional<int>;
using opt_no_assign = std::optional<NoAssign>;
m.def("double_or_zero", [](const opt_int & x) -> int { return x.value_or(0) * 2; });
m.def("half_or_none", [](int x) -> opt_int { return x != 0 ? opt_int(x / 2) : opt_int(); });
m.def(
"test_nullopt",
[](opt_int x)
{
return x.value_or(42);
},
py::arg_v("x", std::nullopt, "None"));
m.def(
"test_no_assign",
[](const opt_no_assign & x)
{
return x ? x->value : 42;
},
py::arg_v("x", std::nullopt, "None"));
m.def("nodefer_none_optional", [](std::optional<int>)
{
return true;
});
m.def("nodefer_none_optional", [](const py::none&)
{
return false;
});
using opt_holder = OptionalHolder<std::optional, MoveOutDetector>;
py::class_<opt_holder>(m, "OptionalHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_holder::member)
.def("member_initialized", &opt_holder::member_initialized);
using opt_props = OptionalProperties<std::optional>;
pybind11::class_<opt_props>(m, "OptionalProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_props::access_by_copy);
#endif
#ifdef PYBIND11_HAS_EXP_OPTIONAL
// test_exp_optional
m.attr("has_exp_optional") = true;
using exp_opt_int = std::experimental::optional<int>;
using exp_opt_no_assign = std::experimental::optional<NoAssign>;
m.def("double_or_zero_exp", [](const exp_opt_int & x) -> int { return x.value_or(0) * 2; });
m.def("half_or_none_exp",
[](int x) -> exp_opt_int { return x ? exp_opt_int(x / 2) : exp_opt_int(); });
m.def(
"test_nullopt_exp",
[](exp_opt_int x)
{
return x.value_or(42);
},
py::arg_v("x", std::experimental::nullopt, "None"));
m.def(
"test_no_assign_exp",
[](const exp_opt_no_assign & x)
{
return x ? x->value : 42;
},
py::arg_v("x", std::experimental::nullopt, "None"));
using opt_exp_holder = OptionalHolder<std::experimental::optional, MoveOutDetector>;
py::class_<opt_exp_holder>(m, "OptionalExpHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_exp_holder::member)
.def("member_initialized", &opt_exp_holder::member_initialized);
using opt_exp_props = OptionalProperties<std::experimental::optional>;
pybind11::class_<opt_exp_props>(m, "OptionalExpProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_exp_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_exp_props::access_by_copy);
#endif
#if defined(PYBIND11_TEST_BOOST)
// test_boost_optional
m.attr("has_boost_optional") = true;
using boost_opt_int = boost::optional<int>;
using boost_opt_no_assign = boost::optional<NoAssign>;
m.def("double_or_zero_boost", [](const boost_opt_int & x) -> int { return x.value_or(0) * 2; });
m.def("half_or_none_boost",
[](int x) -> boost_opt_int { return x != 0 ? boost_opt_int(x / 2) : boost_opt_int(); });
m.def(
"test_nullopt_boost",
[](boost_opt_int x)
{
return x.value_or(42);
},
py::arg_v("x", boost::none, "None"));
m.def(
"test_no_assign_boost",
[](const boost_opt_no_assign & x)
{
return x ? x->value : 42;
},
py::arg_v("x", boost::none, "None"));
using opt_boost_holder = OptionalHolder<boost::optional, MoveOutDetector>;
py::class_<opt_boost_holder>(m, "OptionalBoostHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_boost_holder::member)
.def("member_initialized", &opt_boost_holder::member_initialized);
using opt_boost_props = OptionalProperties<boost::optional>;
pybind11::class_<opt_boost_props>(m, "OptionalBoostProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_boost_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_boost_props::access_by_copy);
#endif
// test_refsensitive_optional
using refsensitive_opt_int = ReferenceSensitiveOptional<int>;
using refsensitive_opt_no_assign = ReferenceSensitiveOptional<NoAssign>;
m.def("double_or_zero_refsensitive",
[](const refsensitive_opt_int & x) -> int { return (x ? x.value() : 0) * 2; });
m.def("half_or_none_refsensitive", [](int x) -> refsensitive_opt_int
{
return x != 0 ? refsensitive_opt_int(x / 2) : refsensitive_opt_int();
});
m.def(
"test_nullopt_refsensitive",
// NOLINTNEXTLINE(performance-unnecessary-value-param)
[](refsensitive_opt_int x)
{
return x ? x.value() : 42;
},
py::arg_v("x", refsensitive_opt_int(), "None"));
m.def(
"test_no_assign_refsensitive",
[](const refsensitive_opt_no_assign & x)
{
return x ? x->value : 42;
},
py::arg_v("x", refsensitive_opt_no_assign(), "None"));
using opt_refsensitive_holder = OptionalHolder<ReferenceSensitiveOptional, MoveOutDetector>;
py::class_<opt_refsensitive_holder>(
m, "OptionalRefSensitiveHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_refsensitive_holder::member)
.def("member_initialized", &opt_refsensitive_holder::member_initialized);
using opt_refsensitive_props = OptionalProperties<ReferenceSensitiveOptional>;
pybind11::class_<opt_refsensitive_props>(m, "OptionalRefSensitiveProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_refsensitive_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_refsensitive_props::access_by_copy);
#ifdef PYBIND11_HAS_FILESYSTEM
// test_fs_path
m.attr("has_filesystem") = true;
m.def("parent_path", [](const std::filesystem::path & p)
{
return p.parent_path();
});
#endif
#ifdef PYBIND11_TEST_VARIANT
static_assert(std::is_same<py::detail::variant_caster_visitor::result_type, py::handle>::value,
"visitor::result_type is required by boost::variant in C++11 mode");
struct visitor
{
using result_type = const char *;
result_type operator()(int)
{
return "int";
}
result_type operator()(const std::string&)
{
return "std::string";
}
result_type operator()(double)
{
return "double";
}
result_type operator()(std::nullptr_t)
{
return "std::nullptr_t";
}
# if defined(PYBIND11_HAS_VARIANT)
result_type operator()(std::monostate)
{
return "std::monostate";
}
# endif
};
// test_variant
m.def("load_variant", [](const variant<int, std::string, double, std::nullptr_t>& v)
{
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("load_variant_2pass", [](variant<double, int> v)
{
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("cast_variant", []()
{
using V = variant<int, std::string>;
return py::make_tuple(V(5), V("Hello"));
});
# if defined(PYBIND11_HAS_VARIANT)
// std::monostate tests.
m.def("load_monostate_variant",
[](const variant<std::monostate, int, std::string>& v) -> const char*
{
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("cast_monostate_variant", []()
{
using V = variant<std::monostate, int, std::string>;
return py::make_tuple(V{}, V(5), V("Hello"));
});
# endif
#endif
// #528: templated constructor
// (no python tests: the test here is that this compiles)
m.def("tpl_ctor_vector", [](std::vector<TplCtorClass>&) {});
m.def("tpl_ctor_map", [](std::unordered_map<TplCtorClass, TplCtorClass>&) {});
m.def("tpl_ctor_set", [](std::unordered_set<TplCtorClass>&) {});
#if defined(PYBIND11_HAS_OPTIONAL)
m.def("tpl_constr_optional", [](std::optional<TplCtorClass>&) {});
#endif
#if defined(PYBIND11_HAS_EXP_OPTIONAL)
m.def("tpl_constr_optional_exp", [](std::experimental::optional<TplCtorClass>&) {});
#endif
#if defined(PYBIND11_TEST_BOOST)
m.def("tpl_constr_optional_boost", [](boost::optional<TplCtorClass>&) {});
#endif
// test_vec_of_reference_wrapper
// #171: Can't return STL structures containing reference wrapper
m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<UserType> p4)
{
static UserType p1{1}, p2{2}, p3{3};
return std::vector<std::reference_wrapper<UserType>>
{
std::ref(p1), std::ref(p2), std::ref(p3), p4
};
});
// test_stl_pass_by_pointer
m.def("stl_pass_by_pointer", [](std::vector<int>* v)
{
return *v;
}, "v"_a = nullptr);
// #1258: pybind11/stl.h converts string to vector<string>
m.def("func_with_string_or_vector_string_arg_overload",
[](const std::vector<std::string>&)
{
return 1;
});
m.def("func_with_string_or_vector_string_arg_overload",
[](const std::list<std::string>&)
{
return 2;
});
m.def("func_with_string_or_vector_string_arg_overload", [](const std::string&)
{
return 3;
});
class Placeholder
{
public:
Placeholder()
{
print_created(this);
}
Placeholder(const Placeholder&) = delete;
~Placeholder()
{
print_destroyed(this);
}
};
py::class_<Placeholder>(m, "Placeholder");
/// test_stl_vector_ownership
m.def(
"test_stl_ownership",
[]()
{
std::vector<Placeholder*> result;
result.push_back(new Placeholder());
return result;
},
py::return_value_policy::take_ownership);
m.def("array_cast_sequence", [](std::array<int, 3> x)
{
return x;
});
/// test_issue_1561
struct Issue1561Inner
{
std::string data;
};
struct Issue1561Outer
{
std::vector<Issue1561Inner> list;
};
py::class_<Issue1561Inner>(m, "Issue1561Inner")
.def(py::init<std::string>())
.def_readwrite("data", &Issue1561Inner::data);
py::class_<Issue1561Outer>(m, "Issue1561Outer")
.def(py::init<>())
.def_readwrite("list", &Issue1561Outer::list);
m.def(
"return_vector_bool_raw_ptr",
[]()
{
return new std::vector<bool>(4513);
},
// Without explicitly specifying `take_ownership`, this function leaks.
py::return_value_policy::take_ownership);
}