mirror of
https://github.com/thelsing/knx.git
synced 2025-01-02 00:06:43 +01:00
444 lines
20 KiB
C++
444 lines
20 KiB
C++
/*
|
||
tests/eigen.cpp -- automatic conversion of Eigen types
|
||
|
||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||
|
||
All rights reserved. Use of this source code is governed by a
|
||
BSD-style license that can be found in the LICENSE file.
|
||
*/
|
||
|
||
#include <pybind11/eigen/matrix.h>
|
||
#include <pybind11/stl.h>
|
||
|
||
#include "constructor_stats.h"
|
||
#include "pybind11_tests.h"
|
||
|
||
PYBIND11_WARNING_DISABLE_MSVC(4996)
|
||
|
||
#include <Eigen/Cholesky>
|
||
|
||
using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
|
||
|
||
// Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the
|
||
// (1-based) row/column number.
|
||
template <typename M>
|
||
void reset_ref(M &x) {
|
||
for (int i = 0; i < x.rows(); i++) {
|
||
for (int j = 0; j < x.cols(); j++) {
|
||
x(i, j) = 11 + 10 * i + j;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Returns a static, column-major matrix
|
||
Eigen::MatrixXd &get_cm() {
|
||
static Eigen::MatrixXd *x;
|
||
if (!x) {
|
||
x = new Eigen::MatrixXd(3, 3);
|
||
reset_ref(*x);
|
||
}
|
||
return *x;
|
||
}
|
||
// Likewise, but row-major
|
||
MatrixXdR &get_rm() {
|
||
static MatrixXdR *x;
|
||
if (!x) {
|
||
x = new MatrixXdR(3, 3);
|
||
reset_ref(*x);
|
||
}
|
||
return *x;
|
||
}
|
||
// Resets the values of the static matrices returned by get_cm()/get_rm()
|
||
void reset_refs() {
|
||
reset_ref(get_cm());
|
||
reset_ref(get_rm());
|
||
}
|
||
|
||
// Returns element 2,1 from a matrix (used to test copy/nocopy)
|
||
double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); }
|
||
|
||
// Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix
|
||
// reference is referencing rows/columns correctly).
|
||
template <typename MatrixArgType>
|
||
Eigen::MatrixXd adjust_matrix(MatrixArgType m) {
|
||
Eigen::MatrixXd ret(m);
|
||
for (int c = 0; c < m.cols(); c++) {
|
||
for (int r = 0; r < m.rows(); r++) {
|
||
ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign)
|
||
}
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
struct CustomOperatorNew {
|
||
CustomOperatorNew() = default;
|
||
|
||
Eigen::Matrix4d a = Eigen::Matrix4d::Zero();
|
||
Eigen::Matrix4d b = Eigen::Matrix4d::Identity();
|
||
|
||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||
};
|
||
|
||
TEST_SUBMODULE(eigen_matrix, m) {
|
||
using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>;
|
||
using FixedMatrixC = Eigen::Matrix<float, 5, 6>;
|
||
using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
|
||
using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
|
||
using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>;
|
||
using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>;
|
||
using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>;
|
||
using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>;
|
||
using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>;
|
||
using SparseMatrixC = Eigen::SparseMatrix<float>;
|
||
|
||
// various tests
|
||
m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; });
|
||
m.def("double_row",
|
||
[](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; });
|
||
m.def("double_complex",
|
||
[](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; });
|
||
m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; });
|
||
m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; });
|
||
m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; });
|
||
m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; });
|
||
|
||
// test_eigen_ref_to_python
|
||
// Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended
|
||
m.def("cholesky1",
|
||
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
|
||
m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
|
||
return x.llt().matrixL();
|
||
});
|
||
m.def("cholesky3",
|
||
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
|
||
m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
|
||
return x.llt().matrixL();
|
||
});
|
||
|
||
// test_eigen_ref_mutators
|
||
// Mutators: these add some value to the given element using Eigen, but Eigen should be mapping
|
||
// into the numpy array data and so the result should show up there. There are three versions:
|
||
// one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column
|
||
// matrix, and one for any matrix.
|
||
auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; };
|
||
auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; };
|
||
|
||
// Mutators (Eigen maps into numpy variables):
|
||
m.def("add_rm", add_rm); // Only takes row-contiguous
|
||
m.def("add_cm", add_cm); // Only takes column-contiguous
|
||
// Overloaded versions that will accept either row or column contiguous:
|
||
m.def("add1", add_rm);
|
||
m.def("add1", add_cm);
|
||
m.def("add2", add_cm);
|
||
m.def("add2", add_rm);
|
||
// This one accepts a matrix of any stride:
|
||
m.def("add_any",
|
||
[](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; });
|
||
|
||
// Return mutable references (numpy maps into eigen variables)
|
||
m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); });
|
||
m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); });
|
||
// The same references, but non-mutable (numpy maps into eigen variables, but is !writeable)
|
||
m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); });
|
||
m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); });
|
||
|
||
m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values
|
||
|
||
// Increments and returns ref to (same) matrix
|
||
m.def(
|
||
"incr_matrix",
|
||
[](Eigen::Ref<Eigen::MatrixXd> m, double v) {
|
||
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
|
||
return m;
|
||
},
|
||
py::return_value_policy::reference);
|
||
|
||
// Same, but accepts a matrix of any strides
|
||
m.def(
|
||
"incr_matrix_any",
|
||
[](py::EigenDRef<Eigen::MatrixXd> m, double v) {
|
||
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
|
||
return m;
|
||
},
|
||
py::return_value_policy::reference);
|
||
|
||
// Returns an eigen slice of even rows
|
||
m.def(
|
||
"even_rows",
|
||
[](py::EigenDRef<Eigen::MatrixXd> m) {
|
||
return py::EigenDMap<Eigen::MatrixXd>(
|
||
m.data(),
|
||
(m.rows() + 1) / 2,
|
||
m.cols(),
|
||
py::EigenDStride(m.outerStride(), 2 * m.innerStride()));
|
||
},
|
||
py::return_value_policy::reference);
|
||
|
||
// Returns an eigen slice of even columns
|
||
m.def(
|
||
"even_cols",
|
||
[](py::EigenDRef<Eigen::MatrixXd> m) {
|
||
return py::EigenDMap<Eigen::MatrixXd>(
|
||
m.data(),
|
||
m.rows(),
|
||
(m.cols() + 1) / 2,
|
||
py::EigenDStride(2 * m.outerStride(), m.innerStride()));
|
||
},
|
||
py::return_value_policy::reference);
|
||
|
||
// Returns diagonals: a vector-like object with an inner stride != 1
|
||
m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); });
|
||
m.def("diagonal_1",
|
||
[](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); });
|
||
m.def("diagonal_n",
|
||
[](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); });
|
||
|
||
// Return a block of a matrix (gives non-standard strides)
|
||
m.def("block",
|
||
[m](const py::object &x_obj,
|
||
int start_row,
|
||
int start_col,
|
||
int block_rows,
|
||
int block_cols) {
|
||
return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols);
|
||
});
|
||
|
||
m.def(
|
||
"_block",
|
||
[](const py::object &x_obj,
|
||
const Eigen::Ref<const Eigen::MatrixXd> &x,
|
||
int start_row,
|
||
int start_col,
|
||
int block_rows,
|
||
int block_cols) {
|
||
// See PR #4217 for background. This test is a bit over the top, but might be useful
|
||
// as a concrete example to point to when explaining the dangling reference trap.
|
||
auto i0 = py::make_tuple(0, 0);
|
||
auto x0_orig = x_obj[*i0].cast<double>();
|
||
if (x(0, 0) != x0_orig) {
|
||
throw std::runtime_error(
|
||
"Something in the type_caster for Eigen::Ref is terribly wrong.");
|
||
}
|
||
double x0_mod = x0_orig + 1;
|
||
x_obj[*i0] = x0_mod;
|
||
auto copy_detected = (x(0, 0) != x0_mod);
|
||
x_obj[*i0] = x0_orig;
|
||
if (copy_detected) {
|
||
throw std::runtime_error("type_caster for Eigen::Ref made a copy.");
|
||
}
|
||
return x.block(start_row, start_col, block_rows, block_cols);
|
||
},
|
||
py::keep_alive<0, 1>());
|
||
|
||
// test_eigen_return_references, test_eigen_keepalive
|
||
// return value referencing/copying tests:
|
||
class ReturnTester {
|
||
Eigen::MatrixXd mat = create();
|
||
|
||
public:
|
||
ReturnTester() { print_created(this); }
|
||
~ReturnTester() { print_destroyed(this); }
|
||
static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); }
|
||
// NOLINTNEXTLINE(readability-const-return-type)
|
||
static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); }
|
||
Eigen::MatrixXd &get() { return mat; }
|
||
Eigen::MatrixXd *getPtr() { return &mat; }
|
||
const Eigen::MatrixXd &view() { return mat; }
|
||
const Eigen::MatrixXd *viewPtr() { return &mat; }
|
||
Eigen::Ref<Eigen::MatrixXd> ref() { return mat; }
|
||
Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; }
|
||
Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) {
|
||
return mat.block(r, c, nrow, ncol);
|
||
}
|
||
Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const {
|
||
return mat.block(r, c, nrow, ncol);
|
||
}
|
||
py::EigenDMap<Eigen::Matrix2d> corners() {
|
||
return py::EigenDMap<Eigen::Matrix2d>(
|
||
mat.data(),
|
||
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
|
||
mat.innerStride() * (mat.innerSize() - 1)));
|
||
}
|
||
py::EigenDMap<const Eigen::Matrix2d> cornersConst() const {
|
||
return py::EigenDMap<const Eigen::Matrix2d>(
|
||
mat.data(),
|
||
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
|
||
mat.innerStride() * (mat.innerSize() - 1)));
|
||
}
|
||
};
|
||
using rvp = py::return_value_policy;
|
||
py::class_<ReturnTester>(m, "ReturnTester")
|
||
.def(py::init<>())
|
||
.def_static("create", &ReturnTester::create)
|
||
.def_static("create_const", &ReturnTester::createConst)
|
||
.def("get", &ReturnTester::get, rvp::reference_internal)
|
||
.def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal)
|
||
.def("view", &ReturnTester::view, rvp::reference_internal)
|
||
.def("view_ptr", &ReturnTester::view, rvp::reference_internal)
|
||
.def("copy_get", &ReturnTester::get) // Default rvp: copy
|
||
.def("copy_view", &ReturnTester::view) // "
|
||
.def("ref", &ReturnTester::ref) // Default for Ref is to reference
|
||
.def("ref_const", &ReturnTester::refConst) // Likewise, but const
|
||
.def("ref_safe", &ReturnTester::ref, rvp::reference_internal)
|
||
.def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal)
|
||
.def("copy_ref", &ReturnTester::ref, rvp::copy)
|
||
.def("copy_ref_const", &ReturnTester::refConst, rvp::copy)
|
||
.def("block", &ReturnTester::block)
|
||
.def("block_safe", &ReturnTester::block, rvp::reference_internal)
|
||
.def("block_const", &ReturnTester::blockConst, rvp::reference_internal)
|
||
.def("copy_block", &ReturnTester::block, rvp::copy)
|
||
.def("corners", &ReturnTester::corners, rvp::reference_internal)
|
||
.def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal);
|
||
|
||
// test_special_matrix_objects
|
||
// Returns a DiagonalMatrix with diagonal (1,2,3,...)
|
||
m.def("incr_diag", [](int k) {
|
||
Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k);
|
||
for (int i = 0; i < k; i++) {
|
||
m.diagonal()[i] = i + 1;
|
||
}
|
||
return m;
|
||
});
|
||
|
||
// Returns a SelfAdjointView referencing the lower triangle of m
|
||
m.def("symmetric_lower",
|
||
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); });
|
||
// Returns a SelfAdjointView referencing the lower triangle of m
|
||
m.def("symmetric_upper",
|
||
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); });
|
||
|
||
// Test matrix for various functions below.
|
||
Eigen::MatrixXf mat(5, 6);
|
||
mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14,
|
||
0, 8, 11;
|
||
|
||
// test_fixed, and various other tests
|
||
m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); });
|
||
// Our Eigen does a hack which respects constness through the numpy writeable flag.
|
||
// Therefore, the const return actually affects this type despite being an rvalue.
|
||
// NOLINTNEXTLINE(readability-const-return-type)
|
||
m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); });
|
||
m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); });
|
||
m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; });
|
||
m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; });
|
||
// test_mutator_descriptors
|
||
m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {});
|
||
m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {});
|
||
m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {});
|
||
// test_dense
|
||
m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); });
|
||
m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); });
|
||
m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; });
|
||
m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; });
|
||
// test_defaults
|
||
bool have_numpy = true;
|
||
try {
|
||
py::module_::import("numpy");
|
||
} catch (const py::error_already_set &) {
|
||
have_numpy = false;
|
||
}
|
||
if (have_numpy) {
|
||
py::module_::import("numpy");
|
||
Eigen::Matrix<double, 3, 3> defaultMatrix = Eigen::Matrix3d::Identity();
|
||
m.def("defaults_mat", [](const Eigen::Matrix3d &) {}, py::arg("mat") = defaultMatrix);
|
||
|
||
Eigen::VectorXd defaultVector = Eigen::VectorXd::Ones(32);
|
||
m.def("defaults_vec", [](const Eigen::VectorXd &) {}, py::arg("vec") = defaultMatrix);
|
||
}
|
||
// test_sparse, test_sparse_signature
|
||
m.def("sparse_r", [mat]() -> SparseMatrixR {
|
||
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
|
||
return Eigen::SparseView<Eigen::MatrixXf>(mat);
|
||
});
|
||
m.def("sparse_c",
|
||
[mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); });
|
||
m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; });
|
||
m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; });
|
||
// test_partially_fixed
|
||
m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; });
|
||
m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; });
|
||
m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; });
|
||
m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; });
|
||
|
||
// test_cpp_casting
|
||
// Test that we can cast a numpy object to a Eigen::MatrixXd explicitly
|
||
m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); });
|
||
m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); });
|
||
m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); });
|
||
m.def("cpp_ref_any",
|
||
[](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); });
|
||
|
||
// [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works.
|
||
|
||
// test_nocopy_wrapper
|
||
// Test that we can prevent copying into an argument that would normally copy: First a version
|
||
// that would allow copying (if types or strides don't match) for comparison:
|
||
m.def("get_elem", &get_elem);
|
||
// Now this alternative that calls the tells pybind to fail rather than copy:
|
||
m.def(
|
||
"get_elem_nocopy",
|
||
[](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); },
|
||
py::arg{}.noconvert());
|
||
// Also test a row-major-only no-copy const ref:
|
||
m.def(
|
||
"get_elem_rm_nocopy",
|
||
[](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long {
|
||
return m(2, 1);
|
||
},
|
||
py::arg{}.noconvert());
|
||
|
||
// test_issue738, test_zero_length
|
||
// Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an
|
||
// incompatible stride value on the length-1 dimension--but that should be allowed (without
|
||
// requiring a copy!) because the stride value can be safely ignored on a size-1 dimension.
|
||
// Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since
|
||
// they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to
|
||
// 0 if any dimension size is 0.
|
||
m.def("iss738_f1",
|
||
&adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>,
|
||
py::arg{}.noconvert());
|
||
m.def("iss738_f2",
|
||
&adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>,
|
||
py::arg{}.noconvert());
|
||
|
||
// test_issue1105
|
||
// Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense
|
||
// eigen Vector or RowVector, the argument would fail to load because the numpy copy would
|
||
// fail: numpy won't broadcast a Nx1 into a 1-dimensional vector.
|
||
m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; });
|
||
m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; });
|
||
|
||
// test_named_arguments
|
||
// Make sure named arguments are working properly:
|
||
m.def(
|
||
"matrix_multiply",
|
||
[](const py::EigenDRef<const Eigen::MatrixXd> &A,
|
||
const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd {
|
||
if (A.cols() != B.rows()) {
|
||
throw std::domain_error("Nonconformable matrices!");
|
||
}
|
||
return A * B;
|
||
},
|
||
py::arg("A"),
|
||
py::arg("B"));
|
||
|
||
// test_custom_operator_new
|
||
py::class_<CustomOperatorNew>(m, "CustomOperatorNew")
|
||
.def(py::init<>())
|
||
.def_readonly("a", &CustomOperatorNew::a)
|
||
.def_readonly("b", &CustomOperatorNew::b);
|
||
|
||
// test_eigen_ref_life_support
|
||
// In case of a failure (the caster's temp array does not live long enough), creating
|
||
// a new array (np.ones(10)) increases the chances that the temp array will be garbage
|
||
// collected and/or that its memory will be overridden with different values.
|
||
m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) {
|
||
py::module_::import("numpy").attr("ones")(10);
|
||
return v(5);
|
||
});
|
||
m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) {
|
||
py::module_::import("numpy").attr("ones")(10);
|
||
return v[0](5);
|
||
});
|
||
}
|