mirror of
https://github.com/thelsing/knx.git
synced 2025-01-21 00:05:43 +01:00
291 lines
9.2 KiB
Python
291 lines
9.2 KiB
Python
from __future__ import annotations
|
|
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
np = pytest.importorskip("numpy")
|
|
eigen_tensor = pytest.importorskip("pybind11_tests.eigen_tensor")
|
|
submodules = [eigen_tensor.c_style, eigen_tensor.f_style]
|
|
try:
|
|
import eigen_tensor_avoid_stl_array as avoid
|
|
|
|
submodules += [avoid.c_style, avoid.f_style]
|
|
except ImportError as e:
|
|
# Ensure config, build, toolchain, etc. issues are not masked here:
|
|
msg = (
|
|
"import eigen_tensor_avoid_stl_array FAILED, while "
|
|
"import pybind11_tests.eigen_tensor succeeded. "
|
|
"Please ensure that "
|
|
"test_eigen_tensor.cpp & "
|
|
"eigen_tensor_avoid_stl_array.cpp "
|
|
"are built together (or both are not built if Eigen is not available)."
|
|
)
|
|
raise RuntimeError(msg) from e
|
|
|
|
tensor_ref = np.empty((3, 5, 2), dtype=np.int64)
|
|
|
|
for i in range(tensor_ref.shape[0]):
|
|
for j in range(tensor_ref.shape[1]):
|
|
for k in range(tensor_ref.shape[2]):
|
|
tensor_ref[i, j, k] = i * (5 * 2) + j * 2 + k
|
|
|
|
indices = (2, 3, 1)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def cleanup():
|
|
for module in submodules:
|
|
module.setup()
|
|
|
|
yield
|
|
|
|
for module in submodules:
|
|
assert module.is_ok()
|
|
|
|
|
|
def test_import_avoid_stl_array():
|
|
pytest.importorskip("eigen_tensor_avoid_stl_array")
|
|
assert len(submodules) == 4
|
|
|
|
|
|
def assert_equal_tensor_ref(mat, writeable=True, modified=None):
|
|
assert mat.flags.writeable == writeable
|
|
|
|
copy = np.array(tensor_ref)
|
|
if modified is not None:
|
|
copy[indices] = modified
|
|
|
|
np.testing.assert_array_equal(mat, copy)
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
@pytest.mark.parametrize("member_name", ["member", "member_view"])
|
|
def test_reference_internal(m, member_name):
|
|
if not hasattr(sys, "getrefcount"):
|
|
pytest.skip("No reference counting")
|
|
foo = m.CustomExample()
|
|
counts = sys.getrefcount(foo)
|
|
mem = getattr(foo, member_name)
|
|
assert_equal_tensor_ref(mem, writeable=False)
|
|
new_counts = sys.getrefcount(foo)
|
|
assert new_counts == counts + 1
|
|
assert_equal_tensor_ref(mem, writeable=False)
|
|
del mem
|
|
assert sys.getrefcount(foo) == counts
|
|
|
|
|
|
assert_equal_funcs = [
|
|
"copy_tensor",
|
|
"copy_fixed_tensor",
|
|
"copy_const_tensor",
|
|
"move_tensor_copy",
|
|
"move_fixed_tensor_copy",
|
|
"take_tensor",
|
|
"take_fixed_tensor",
|
|
"reference_tensor",
|
|
"reference_tensor_v2",
|
|
"reference_fixed_tensor",
|
|
"reference_view_of_tensor",
|
|
"reference_view_of_tensor_v3",
|
|
"reference_view_of_tensor_v5",
|
|
"reference_view_of_fixed_tensor",
|
|
]
|
|
|
|
assert_equal_const_funcs = [
|
|
"reference_view_of_tensor_v2",
|
|
"reference_view_of_tensor_v4",
|
|
"reference_view_of_tensor_v6",
|
|
"reference_const_tensor",
|
|
"reference_const_tensor_v2",
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
@pytest.mark.parametrize("func_name", assert_equal_funcs + assert_equal_const_funcs)
|
|
def test_convert_tensor_to_py(m, func_name):
|
|
writeable = func_name in assert_equal_funcs
|
|
assert_equal_tensor_ref(getattr(m, func_name)(), writeable=writeable)
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
def test_bad_cpp_to_python_casts(m):
|
|
with pytest.raises(
|
|
RuntimeError, match="Cannot use reference internal when there is no parent"
|
|
):
|
|
m.reference_tensor_internal()
|
|
|
|
with pytest.raises(RuntimeError, match="Cannot move from a constant reference"):
|
|
m.move_const_tensor()
|
|
|
|
with pytest.raises(
|
|
RuntimeError, match="Cannot take ownership of a const reference"
|
|
):
|
|
m.take_const_tensor()
|
|
|
|
with pytest.raises(
|
|
RuntimeError,
|
|
match="Invalid return_value_policy for Eigen Map type, must be either reference or reference_internal",
|
|
):
|
|
m.take_view_tensor()
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
def test_bad_python_to_cpp_casts(m):
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_tensor\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_tensor(np.zeros((2, 3)))
|
|
|
|
with pytest.raises(TypeError, match=r"^Cannot cast array data from dtype"):
|
|
m.round_trip_tensor(np.zeros(dtype=np.str_, shape=(2, 3, 1)))
|
|
|
|
with pytest.raises(
|
|
TypeError,
|
|
match=r"^round_trip_tensor_noconvert\(\): incompatible function arguments",
|
|
):
|
|
m.round_trip_tensor_noconvert(tensor_ref)
|
|
|
|
assert_equal_tensor_ref(
|
|
m.round_trip_tensor_noconvert(tensor_ref.astype(np.float64))
|
|
)
|
|
|
|
bad_options = "C" if m.needed_options == "F" else "F"
|
|
# Shape, dtype and the order need to be correct for a TensorMap cast
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_view_tensor(
|
|
np.zeros((3, 5, 2), dtype=np.float64, order=bad_options)
|
|
)
|
|
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_view_tensor(
|
|
np.zeros((3, 5, 2), dtype=np.float32, order=m.needed_options)
|
|
)
|
|
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_view_tensor(
|
|
np.zeros((3, 5), dtype=np.float64, order=m.needed_options)
|
|
)
|
|
|
|
temp = np.zeros((3, 5, 2), dtype=np.float64, order=m.needed_options)
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_view_tensor(
|
|
temp[:, ::-1, :],
|
|
)
|
|
|
|
temp = np.zeros((3, 5, 2), dtype=np.float64, order=m.needed_options)
|
|
temp.setflags(write=False)
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_view_tensor(temp)
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
def test_references_actually_refer(m):
|
|
a = m.reference_tensor()
|
|
temp = a[indices]
|
|
a[indices] = 100
|
|
assert_equal_tensor_ref(m.copy_const_tensor(), modified=100)
|
|
a[indices] = temp
|
|
assert_equal_tensor_ref(m.copy_const_tensor())
|
|
|
|
a = m.reference_view_of_tensor()
|
|
a[indices] = 100
|
|
assert_equal_tensor_ref(m.copy_const_tensor(), modified=100)
|
|
a[indices] = temp
|
|
assert_equal_tensor_ref(m.copy_const_tensor())
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
def test_round_trip(m):
|
|
assert_equal_tensor_ref(m.round_trip_tensor(tensor_ref))
|
|
|
|
with pytest.raises(TypeError, match="^Cannot cast array data from"):
|
|
assert_equal_tensor_ref(m.round_trip_tensor2(tensor_ref))
|
|
|
|
assert_equal_tensor_ref(m.round_trip_tensor2(np.array(tensor_ref, dtype=np.int32)))
|
|
assert_equal_tensor_ref(m.round_trip_fixed_tensor(tensor_ref))
|
|
assert_equal_tensor_ref(m.round_trip_aligned_view_tensor(m.reference_tensor()))
|
|
|
|
copy = np.array(tensor_ref, dtype=np.float64, order=m.needed_options)
|
|
assert_equal_tensor_ref(m.round_trip_view_tensor(copy))
|
|
assert_equal_tensor_ref(m.round_trip_view_tensor_ref(copy))
|
|
assert_equal_tensor_ref(m.round_trip_view_tensor_ptr(copy))
|
|
copy.setflags(write=False)
|
|
assert_equal_tensor_ref(m.round_trip_const_view_tensor(copy))
|
|
|
|
np.testing.assert_array_equal(
|
|
tensor_ref[:, ::-1, :], m.round_trip_tensor(tensor_ref[:, ::-1, :])
|
|
)
|
|
|
|
assert m.round_trip_rank_0(np.float64(3.5)) == 3.5
|
|
assert m.round_trip_rank_0(3.5) == 3.5
|
|
|
|
with pytest.raises(
|
|
TypeError,
|
|
match=r"^round_trip_rank_0_noconvert\(\): incompatible function arguments",
|
|
):
|
|
m.round_trip_rank_0_noconvert(np.float64(3.5))
|
|
|
|
with pytest.raises(
|
|
TypeError,
|
|
match=r"^round_trip_rank_0_noconvert\(\): incompatible function arguments",
|
|
):
|
|
m.round_trip_rank_0_noconvert(3.5)
|
|
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_rank_0_view\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_rank_0_view(np.float64(3.5))
|
|
|
|
with pytest.raises(
|
|
TypeError, match=r"^round_trip_rank_0_view\(\): incompatible function arguments"
|
|
):
|
|
m.round_trip_rank_0_view(3.5)
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
def test_round_trip_references_actually_refer(m):
|
|
# Need to create a copy that matches the type on the C side
|
|
copy = np.array(tensor_ref, dtype=np.float64, order=m.needed_options)
|
|
a = m.round_trip_view_tensor(copy)
|
|
temp = a[indices]
|
|
a[indices] = 100
|
|
assert_equal_tensor_ref(copy, modified=100)
|
|
a[indices] = temp
|
|
assert_equal_tensor_ref(copy)
|
|
|
|
|
|
@pytest.mark.parametrize("m", submodules)
|
|
def test_doc_string(m, doc):
|
|
assert (
|
|
doc(m.copy_tensor) == "copy_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
|
)
|
|
assert (
|
|
doc(m.copy_fixed_tensor)
|
|
== "copy_fixed_tensor() -> numpy.ndarray[numpy.float64[3, 5, 2]]"
|
|
)
|
|
assert (
|
|
doc(m.reference_const_tensor)
|
|
== "reference_const_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
|
)
|
|
|
|
order_flag = f"flags.{m.needed_options.lower()}_contiguous"
|
|
assert doc(m.round_trip_view_tensor) == (
|
|
f"round_trip_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}])"
|
|
f" -> numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}]"
|
|
)
|
|
assert doc(m.round_trip_const_view_tensor) == (
|
|
f"round_trip_const_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], {order_flag}])"
|
|
" -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
|
)
|