knx/examples/knxPython/pybind11/tests/test_callbacks.cpp
2024-09-14 19:38:30 +02:00

281 lines
11 KiB
C++

/*
tests/test_callbacks.cpp -- callbacks
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include <pybind11/functional.h>
#include "constructor_stats.h"
#include "pybind11_tests.h"
#include <thread>
int dummy_function(int i) { return i + 1; }
TEST_SUBMODULE(callbacks, m) {
// test_callbacks, test_function_signatures
m.def("test_callback1", [](const py::object &func) { return func(); });
m.def("test_callback2", [](const py::object &func) { return func("Hello", 'x', true, 5); });
m.def("test_callback3", [](const std::function<int(int)> &func) {
return "func(43) = " + std::to_string(func(43));
});
m.def("test_callback4",
[]() -> std::function<int(int)> { return [](int i) { return i + 1; }; });
m.def("test_callback5",
[]() { return py::cpp_function([](int i) { return i + 1; }, py::arg("number")); });
// test_keyword_args_and_generalized_unpacking
m.def("test_tuple_unpacking", [](const py::function &f) {
auto t1 = py::make_tuple(2, 3);
auto t2 = py::make_tuple(5, 6);
return f("positional", 1, *t1, 4, *t2);
});
m.def("test_dict_unpacking", [](const py::function &f) {
auto d1 = py::dict("key"_a = "value", "a"_a = 1);
auto d2 = py::dict();
auto d3 = py::dict("b"_a = 2);
return f("positional", 1, **d1, **d2, **d3);
});
m.def("test_keyword_args", [](const py::function &f) { return f("x"_a = 10, "y"_a = 20); });
m.def("test_unpacking_and_keywords1", [](const py::function &f) {
auto args = py::make_tuple(2);
auto kwargs = py::dict("d"_a = 4);
return f(1, *args, "c"_a = 3, **kwargs);
});
m.def("test_unpacking_and_keywords2", [](const py::function &f) {
auto kwargs1 = py::dict("a"_a = 1);
auto kwargs2 = py::dict("c"_a = 3, "d"_a = 4);
return f("positional",
*py::make_tuple(1),
2,
*py::make_tuple(3, 4),
5,
"key"_a = "value",
**kwargs1,
"b"_a = 2,
**kwargs2,
"e"_a = 5);
});
m.def("test_unpacking_error1", [](const py::function &f) {
auto kwargs = py::dict("x"_a = 3);
return f("x"_a = 1, "y"_a = 2, **kwargs); // duplicate ** after keyword
});
m.def("test_unpacking_error2", [](const py::function &f) {
auto kwargs = py::dict("x"_a = 3);
return f(**kwargs, "x"_a = 1); // duplicate keyword after **
});
m.def("test_arg_conversion_error1",
[](const py::function &f) { f(234, UnregisteredType(), "kw"_a = 567); });
m.def("test_arg_conversion_error2", [](const py::function &f) {
f(234, "expected_name"_a = UnregisteredType(), "kw"_a = 567);
});
// test_lambda_closure_cleanup
struct Payload {
Payload() { print_default_created(this); }
~Payload() { print_destroyed(this); }
Payload(const Payload &) { print_copy_created(this); }
Payload(Payload &&) noexcept { print_move_created(this); }
};
// Export the payload constructor statistics for testing purposes:
m.def("payload_cstats", &ConstructorStats::get<Payload>);
m.def("test_lambda_closure_cleanup", []() -> std::function<void()> {
Payload p;
// In this situation, `Func` in the implementation of
// `cpp_function::initialize` is NOT trivially destructible.
return [p]() {
/* p should be cleaned up when the returned function is garbage collected */
(void) p;
};
});
class CppCallable {
public:
CppCallable() { track_default_created(this); }
~CppCallable() { track_destroyed(this); }
CppCallable(const CppCallable &) { track_copy_created(this); }
CppCallable(CppCallable &&) noexcept { track_move_created(this); }
void operator()() {}
};
m.def("test_cpp_callable_cleanup", []() {
// Related issue: https://github.com/pybind/pybind11/issues/3228
// Related PR: https://github.com/pybind/pybind11/pull/3229
py::list alive_counts;
ConstructorStats &stat = ConstructorStats::get<CppCallable>();
alive_counts.append(stat.alive());
{
CppCallable cpp_callable;
alive_counts.append(stat.alive());
{
// In this situation, `Func` in the implementation of
// `cpp_function::initialize` IS trivially destructible,
// only `capture` is not.
py::cpp_function py_func(cpp_callable);
py::detail::silence_unused_warnings(py_func);
alive_counts.append(stat.alive());
}
alive_counts.append(stat.alive());
{
py::cpp_function py_func(std::move(cpp_callable));
py::detail::silence_unused_warnings(py_func);
alive_counts.append(stat.alive());
}
alive_counts.append(stat.alive());
}
alive_counts.append(stat.alive());
return alive_counts;
});
// test_cpp_function_roundtrip
/* Test if passing a function pointer from C++ -> Python -> C++ yields the original pointer */
m.def("dummy_function", &dummy_function);
m.def("dummy_function_overloaded", [](int i, int j) { return i + j; });
m.def("dummy_function_overloaded", &dummy_function);
m.def("dummy_function2", [](int i, int j) { return i + j; });
m.def(
"roundtrip",
[](std::function<int(int)> f, bool expect_none) {
if (expect_none && f) {
throw std::runtime_error("Expected None to be converted to empty std::function");
}
return f;
},
py::arg("f"),
py::arg("expect_none") = false);
m.def("test_dummy_function", [](const std::function<int(int)> &f) -> std::string {
using fn_type = int (*)(int);
const auto *result = f.target<fn_type>();
if (!result) {
auto r = f(1);
return "can't convert to function pointer: eval(1) = " + std::to_string(r);
}
if (*result == dummy_function) {
auto r = (*result)(1);
return "matches dummy_function: eval(1) = " + std::to_string(r);
}
return "argument does NOT match dummy_function. This should never happen!";
});
class AbstractBase {
public:
// [workaround(intel)] = default does not work here
// Defaulting this destructor results in linking errors with the Intel compiler
// (in Debug builds only, tested with icpc (ICC) 2021.1 Beta 20200827)
virtual ~AbstractBase() {} // NOLINT(modernize-use-equals-default)
virtual unsigned int func() = 0;
};
m.def("func_accepting_func_accepting_base",
[](const std::function<double(AbstractBase &)> &) {});
struct MovableObject {
bool valid = true;
MovableObject() = default;
MovableObject(const MovableObject &) = default;
MovableObject &operator=(const MovableObject &) = default;
MovableObject(MovableObject &&o) noexcept : valid(o.valid) { o.valid = false; }
MovableObject &operator=(MovableObject &&o) noexcept {
valid = o.valid;
o.valid = false;
return *this;
}
};
py::class_<MovableObject>(m, "MovableObject");
// test_movable_object
m.def("callback_with_movable", [](const std::function<void(MovableObject &)> &f) {
auto x = MovableObject();
f(x); // lvalue reference shouldn't move out object
return x.valid; // must still return `true`
});
// test_bound_method_callback
struct CppBoundMethodTest {};
py::class_<CppBoundMethodTest>(m, "CppBoundMethodTest")
.def(py::init<>())
.def("triple", [](CppBoundMethodTest &, int val) { return 3 * val; });
// This checks that builtin functions can be passed as callbacks
// rather than throwing RuntimeError due to trying to extract as capsule
m.def("test_sum_builtin",
[](const std::function<double(py::iterable)> &sum_builtin, const py::iterable &i) {
return sum_builtin(i);
});
// test async Python callbacks
using callback_f = std::function<void(int)>;
m.def("test_async_callback", [](const callback_f &f, const py::list &work) {
// make detached thread that calls `f` with piece of work after a little delay
auto start_f = [f](int j) {
auto invoke_f = [f, j] {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
f(j);
};
auto t = std::thread(std::move(invoke_f));
t.detach();
};
// spawn worker threads
for (auto i : work) {
start_f(py::cast<int>(i));
}
});
m.def("callback_num_times", [](const py::function &f, std::size_t num) {
for (std::size_t i = 0; i < num; i++) {
f();
}
});
auto *custom_def = []() {
static PyMethodDef def;
def.ml_name = "example_name";
def.ml_doc = "Example doc";
def.ml_meth = [](PyObject *, PyObject *args) -> PyObject * {
if (PyTuple_Size(args) != 1) {
throw std::runtime_error("Invalid number of arguments for example_name");
}
PyObject *first = PyTuple_GetItem(args, 0);
if (!PyLong_Check(first)) {
throw std::runtime_error("Invalid argument to example_name");
}
auto result = py::cast(PyLong_AsLong(first) * 9);
return result.release().ptr();
};
def.ml_flags = METH_VARARGS;
return &def;
}();
// rec_capsule with name that has the same value (but not pointer) as our internal one
// This capsule should be detected by our code as foreign and not inspected as the pointers
// shouldn't match
constexpr const char *rec_capsule_name
= pybind11::detail::internals_function_record_capsule_name;
py::capsule rec_capsule(std::malloc(1), [](void *data) { std::free(data); });
rec_capsule.set_name(rec_capsule_name);
m.add_object("custom_function", PyCFunction_New(custom_def, rec_capsule.ptr()));
// This test requires a new ABI version to pass
#if PYBIND11_INTERNALS_VERSION > 4
// rec_capsule with nullptr name
py::capsule rec_capsule2(std::malloc(1), [](void *data) { std::free(data); });
m.add_object("custom_function2", PyCFunction_New(custom_def, rec_capsule2.ptr()));
#else
m.add_object("custom_function2", py::none());
#endif
}