blakeblackshear.frigate/frigate/detectors/plugins/deepstack.py

89 lines
3.0 KiB
Python
Raw Permalink Normal View History

import io
import logging
import numpy as np
import requests
from PIL import Image
from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
logger = logging.getLogger(__name__)
DETECTOR_KEY = "deepstack"
class DeepstackDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
api_url: str = Field(
default="http://localhost:80/v1/vision/detection", title="DeepStack API URL"
)
api_timeout: float = Field(default=0.1, title="DeepStack API timeout (in seconds)")
api_key: str = Field(default="", title="DeepStack API key (if required)")
class DeepStack(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: DeepstackDetectorConfig):
self.api_url = detector_config.api_url
self.api_timeout = detector_config.api_timeout
self.api_key = detector_config.api_key
self.labels = detector_config.model.merged_labelmap
def get_label_index(self, label_value):
if label_value.lower() == "truck":
label_value = "car"
for index, value in self.labels.items():
if value == label_value.lower():
return index
return -1
def detect_raw(self, tensor_input):
image_data = np.squeeze(tensor_input).astype(np.uint8)
image = Image.fromarray(image_data)
self.w, self.h = image.size
with io.BytesIO() as output:
image.save(output, format="JPEG")
image_bytes = output.getvalue()
data = {"api_key": self.api_key}
try:
response = requests.post(
self.api_url,
data=data,
files={"image": image_bytes},
timeout=self.api_timeout,
)
except requests.exceptions.RequestException:
logger.error("Error calling deepstack API")
return np.zeros((20, 6), np.float32)
response_json = response.json()
detections = np.zeros((20, 6), np.float32)
if response_json.get("predictions") is None:
logger.debug(f"Error in parsing response json: {response_json}")
return detections
for i, detection in enumerate(response_json.get("predictions")):
logger.debug(f"Response: {detection}")
if detection["confidence"] < 0.4:
logger.debug("Break due to confidence < 0.4")
break
label = self.get_label_index(detection["label"])
if label < 0:
logger.debug("Break due to unknown label")
break
detections[i] = [
label,
float(detection["confidence"]),
detection["y_min"] / self.h,
detection["x_min"] / self.w,
detection["y_max"] / self.h,
detection["x_max"] / self.w,
]
return detections