blakeblackshear.frigate/frigate/object_processing.py

394 lines
18 KiB
Python
Raw Normal View History

2020-02-16 04:07:54 +01:00
import json
import hashlib
import datetime
import time
2020-02-16 04:07:54 +01:00
import copy
import cv2
import threading
2020-08-02 15:46:36 +02:00
import queue
2020-09-13 18:39:03 +02:00
import copy
2020-02-16 04:07:54 +01:00
import numpy as np
from collections import Counter, defaultdict
import itertools
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, SharedMemoryFrameManager
2020-02-16 15:49:43 +01:00
from frigate.edgetpu import load_labels
2020-09-07 19:17:42 +02:00
from typing import Callable, Dict
from statistics import mean, median
2020-02-16 04:07:54 +01:00
2020-02-18 12:55:06 +01:00
PATH_TO_LABELS = '/labelmap.txt'
2020-02-16 04:07:54 +01:00
2020-02-16 15:49:43 +01:00
LABELS = load_labels(PATH_TO_LABELS)
2020-02-16 04:07:54 +01:00
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
2020-07-25 14:44:07 +02:00
def zone_filtered(obj, object_config):
object_name = obj['label']
2020-10-11 18:36:38 +02:00
if object_name in object_config:
obj_settings = object_config[object_name]
2020-07-25 14:44:07 +02:00
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
return True
# if the score is lower than the threshold, skip
2020-09-07 19:17:42 +02:00
if obj_settings.get('threshold', 0) > obj['computed_score']:
2020-07-25 14:44:07 +02:00
return True
return False
2020-09-07 19:17:42 +02:00
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros(self.config['frame_shape'], np.uint8)
self.current_frame_lock = threading.Lock()
2020-09-07 19:17:42 +02:00
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
2020-10-11 19:16:05 +02:00
def get_current_frame(self, draw=False):
with self.current_frame_lock:
2020-10-11 19:16:05 +02:00
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = copy.deepcopy(self.tracked_objects)
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone['contour']], -1, zone['color'], thickness)
return frame_copy
2020-09-07 19:17:42 +02:00
def false_positive(self, obj):
# once a true positive, always a true positive
if not obj.get('false_positive', True):
return False
2020-09-07 19:17:42 +02:00
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
frame_id = f"{self.name}{frame_time}"
2020-10-11 19:16:05 +02:00
current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
2020-09-07 19:17:42 +02:00
current_ids = tracked_objects.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
2020-10-13 14:50:14 +02:00
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in obj.get('zones', []) or not zone_filtered(obj, zone.get('filters', {})):
current_zones.append(name)
2020-09-07 19:17:42 +02:00
obj['zones'] = current_zones
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
continue
2020-09-13 18:39:03 +02:00
obj_copy = copy.deepcopy(obj)
2020-09-07 19:17:42 +02:00
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
2020-10-11 19:16:05 +02:00
obj_copy['frame'] = np.copy(current_frame)
2020-09-13 18:39:03 +02:00
self.best_objects[object_type] = obj_copy
2020-09-07 19:17:42 +02:00
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
else:
2020-10-11 19:16:05 +02:00
obj_copy['frame'] = np.copy(current_frame)
2020-09-13 18:39:03 +02:00
self.best_objects[object_type] = obj_copy
2020-09-07 19:17:42 +02:00
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
for c in self.callbacks['snapshot']:
2020-09-09 04:21:15 +02:00
c(self.name, self.best_objects[obj_name])
2020-10-11 19:16:05 +02:00
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
2020-09-07 19:17:42 +02:00
2020-02-16 04:07:54 +01:00
class TrackedObjectProcessor(threading.Thread):
2020-09-15 04:03:18 +02:00
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
2020-02-16 04:07:54 +01:00
threading.Thread.__init__(self)
2020-07-25 14:44:07 +02:00
self.camera_config = camera_config
2020-02-16 04:07:54 +01:00
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
2020-07-09 13:57:16 +02:00
self.event_queue = event_queue
2020-08-02 15:46:36 +02:00
self.stop_event = stop_event
2020-09-07 19:17:42 +02:00
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
2020-09-07 19:17:42 +02:00
def start(camera, obj):
# publish events to mqtt
2020-09-13 18:39:03 +02:00
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
2020-09-07 19:17:42 +02:00
self.event_queue.put(('start', camera, obj))
def update(camera, obj):
pass
def end(camera, obj):
2020-09-13 18:39:03 +02:00
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
2020-09-07 19:17:42 +02:00
self.event_queue.put(('end', camera, obj))
def snapshot(camera, obj):
2020-09-13 18:39:03 +02:00
if not 'frame' in obj:
return
2020-10-17 00:50:40 +02:00
2020-10-11 04:28:12 +02:00
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
if self.camera_config[camera]['snapshots']['draw_bounding_boxes']:
thickness = 2
color = COLOR_MAP[obj['label']]
box = obj['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
2020-09-13 17:02:13 +02:00
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
if mqtt_config.get('crop_to_region'):
region = obj['region']
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if 'snapshot_height' in mqtt_config:
height = int(mqtt_config['snapshot_height'])
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if self.camera_config[camera]['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
2020-10-17 02:23:08 +02:00
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
desired_size = max(200, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), thickness=2)
2020-09-07 19:17:42 +02:00
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
2020-09-07 19:17:42 +02:00
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
2020-02-16 04:07:54 +01:00
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'current_frame_time': 0.0,
'object_id': None
2020-02-16 04:07:54 +01:00
})
2020-09-07 19:17:42 +02:00
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
# set colors for zones
2020-09-15 04:03:18 +02:00
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
2020-09-07 19:17:42 +02:00
zone_colors = {}
2020-09-15 04:03:18 +02:00
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
2020-09-07 19:17:42 +02:00
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
2020-07-25 14:44:07 +02:00
# create zone contours
2020-09-15 04:03:18 +02:00
for camera_config in self.camera_config.values():
for zone_name, zone_config in camera_config['zones'].items():
zone_config['color'] = zone_colors[zone_name]
coordinates = zone_config['coordinates']
2020-07-25 14:44:07 +02:00
if isinstance(coordinates, list):
2020-09-15 04:03:18 +02:00
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
2020-07-25 14:44:07 +02:00
elif isinstance(coordinates, str):
points = coordinates.split(',')
2020-09-15 04:03:18 +02:00
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
2020-07-25 14:44:07 +02:00
else:
2020-09-07 19:17:42 +02:00
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
2020-02-16 04:07:54 +01:00
def get_best(self, camera, label):
2020-09-07 19:17:42 +02:00
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]
2020-02-16 04:07:54 +01:00
else:
return {}
2020-02-16 04:07:54 +01:00
2020-10-11 19:16:05 +02:00
def get_current_frame(self, camera, draw=False):
return self.camera_states[camera].get_current_frame(draw)
2020-02-16 04:07:54 +01:00
def run(self):
while True:
2020-08-02 15:46:36 +02:00
if self.stop_event.is_set():
2020-08-08 14:39:57 +02:00
print(f"Exiting object processor...")
2020-08-02 15:46:36 +02:00
break
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
2020-09-07 19:17:42 +02:00
camera_state = self.camera_states[camera]
camera_state.update(frame_time, current_tracked_objects)
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
2020-09-09 04:13:14 +02:00
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
2020-09-07 19:17:42 +02:00
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
2020-07-25 14:44:07 +02:00
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)