blakeblackshear.frigate/frigate/detectors/detection_api.py

80 lines
2.3 KiB
Python
Raw Normal View History

import logging
from abc import ABC, abstractmethod
import numpy as np
from frigate.detectors.detector_config import ModelTypeEnum
logger = logging.getLogger(__name__)
class DetectionApi(ABC):
type_key: str
@abstractmethod
def __init__(self, detector_config):
self.detector_config = detector_config
self.thresh = 0.5
self.height = detector_config.model.height
self.width = detector_config.model.width
@abstractmethod
def detect_raw(self, tensor_input):
pass
def post_process_yolonas(self, output):
"""
@param output: output of inference
expected shape: [np.array(1, N, 4), np.array(1, N, 80)]
where N depends on the input size e.g. N=2100 for 320x320 images
@return: best results: np.array(20, 6) where each row is
in this order (class_id, score, y1/height, x1/width, y2/height, x2/width)
"""
N = output[0].shape[1]
boxes = output[0].reshape(N, 4)
scores = output[1].reshape(N, 80)
class_ids = np.argmax(scores, axis=1)
scores = scores[np.arange(N), class_ids]
args_best = np.argwhere(scores > self.thresh)[:, 0]
num_matches = len(args_best)
if num_matches == 0:
return np.zeros((20, 6), np.float32)
elif num_matches > 20:
args_best20 = np.argpartition(scores[args_best], -20)[-20:]
args_best = args_best[args_best20]
boxes = boxes[args_best]
class_ids = class_ids[args_best]
scores = scores[args_best]
boxes = np.transpose(
np.vstack(
(
boxes[:, 1] / self.height,
boxes[:, 0] / self.width,
boxes[:, 3] / self.height,
boxes[:, 2] / self.width,
)
)
)
results = np.hstack(
(class_ids[..., np.newaxis], scores[..., np.newaxis], boxes)
)
return np.resize(results, (20, 6))
def post_process(self, output):
if self.detector_config.model.model_type == ModelTypeEnum.yolonas:
return self.yolonas(output)
else:
raise ValueError(
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
)