blakeblackshear.frigate/frigate/object_processing.py

976 lines
38 KiB
Python
Raw Normal View History

2020-11-04 13:31:25 +01:00
import datetime
import json
2020-11-04 04:26:39 +01:00
import logging
import os
2020-08-02 15:46:36 +02:00
import queue
2020-11-04 13:31:25 +01:00
import threading
2020-02-16 04:07:54 +01:00
from collections import Counter, defaultdict
from multiprocessing.synchronize import Event as MpEvent
from typing import Callable, Optional
2020-11-04 13:31:25 +01:00
import cv2
import numpy as np
from frigate.comms.detections_updater import DetectionPublisher, DetectionTypeEnum
from frigate.comms.dispatcher import Dispatcher
from frigate.comms.events_updater import EventEndSubscriber, EventUpdatePublisher
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import (
FrigateConfig,
MqttConfig,
RecordConfig,
SnapshotsConfig,
ZoomingModeEnum,
)
from frigate.const import CLIPS_DIR, UPDATE_CAMERA_ACTIVITY
from frigate.events.types import EventStateEnum, EventTypeEnum
from frigate.ptz.autotrack import PtzAutoTrackerThread
from frigate.track.tracked_object import TrackedObject
from frigate.util.image import (
2021-06-15 22:19:49 +02:00
SharedMemoryFrameManager,
draw_box_with_label,
draw_timestamp,
is_better_thumbnail,
is_label_printable,
2021-06-15 22:19:49 +02:00
)
2020-02-16 04:07:54 +01:00
2020-11-04 04:26:39 +01:00
logger = logging.getLogger(__name__)
2021-02-17 14:23:32 +01:00
2020-09-07 19:17:42 +02:00
# Maintains the state of a camera
2021-02-17 14:23:32 +01:00
class CameraState:
2021-07-13 15:51:15 +02:00
def __init__(
self,
name,
config: FrigateConfig,
frame_manager: SharedMemoryFrameManager,
ptz_autotracker_thread: PtzAutoTrackerThread,
2021-07-13 15:51:15 +02:00
):
2020-09-07 19:17:42 +02:00
self.name = name
self.config = config
2021-06-24 07:51:41 +02:00
self.camera_config = config.cameras[name]
2020-09-07 19:17:42 +02:00
self.frame_manager = frame_manager
self.best_objects: dict[str, TrackedObject] = {}
self.object_counts = defaultdict(int)
self.active_object_counts = defaultdict(int)
self.tracked_objects: dict[str, TrackedObject] = {}
2020-11-11 23:55:50 +01:00
self.frame_cache = {}
self.zone_objects = defaultdict(list)
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
2020-09-07 19:17:42 +02:00
self.current_frame_time = 0.0
2021-01-12 14:00:08 +01:00
self.motion_boxes = []
self.regions = []
2020-09-07 19:17:42 +02:00
self.previous_frame_id = None
self.callbacks = defaultdict(list)
self.ptz_autotracker_thread = ptz_autotracker_thread
2020-09-07 19:17:42 +02:00
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
2020-10-11 19:16:05 +02:00
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
2021-02-17 14:23:32 +01:00
tracked_objects = {k: v.to_dict() for k, v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
2020-10-11 19:16:05 +02:00
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get("mask"):
mask_overlay = np.where(self.camera_config.motion.mask == [0])
frame_copy[mask_overlay] = [0, 0, 0]
2021-02-17 14:23:32 +01:00
if draw_options.get("bounding_boxes"):
2020-10-11 19:16:05 +02:00
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
if obj["frame_time"] == frame_time:
if obj["stationary"]:
color = (220, 220, 220)
thickness = 1
else:
thickness = 2
color = self.config.model.colormap[obj["label"]]
else:
2020-10-11 19:16:05 +02:00
thickness = 1
2021-02-17 14:23:32 +01:00
color = (255, 0, 0)
2020-10-11 19:16:05 +02:00
# draw thicker box around ptz autotracked object
if (
self.camera_config.onvif.autotracking.enabled
Autotracking bugfixes and zooming updates (#8103) * zoom in/out in search for lost objects * predicted box should not be empty * clean up and update zoom logic * only zoom if enabled * more cleanup * check for valid velocity when zooming * only try absolute zoom in if obj area has changed * zoom logic * don't enqueue lost object zoom if already at limit * don't disable motion boxes during ptz moves * velocity threshold based on move coefficients * fix area zoom logic * disable debug zoom * don't process objects if ptz moving * recalc with exponent * change exponent * remove lost object zooming * increase distance threshold for stationary object * increase distance threshold constant * only zoom out if nonzero * camera name in all debug logging * add camera name to debug logging * camera variable name consistency * update calibration behavior and docs * docs and better zooming * more sensible target values * docs wording * fix velocity threshold variable * zooming tweaks and remove iou for current objects * debug and docs * get valid velocity * include zero * additional debug statements * add zoom hysteresis * zoom on initial move if relative * only update target box if we actually zoom * merge dev * use getattr instead of get * increase distance threshold * reverse logic * get_camera_status after preset move to store zoom * final tweaks and docs * use constants and catch possible debug exception * adjust zoom factor exponent * don't run motion estimation when calling preset * adjust dimension threshold * use numpy for velocity estimate calcs * more numpy conversion * fix numpy shapes * numpy zeros dimension * more zoom out conditions * fix velocity bug * ensure init has been called in debug view * ensure onvif init if enabling by mqtt * change default hysteresis values * recalc relative zoom value * zoom out value * try to zoom when object isn't moving * try zoom when tracked object is not moving * don't try to zoom every time * negate zoom out condition when needed * hysteresis constants for absolute zooming * update zoom conditions * don't recalc target box on zoom only * zoom out if above area threshold * don't print zooming debug for stationary obj * revamp zooming to use area moving average * zooming tweaks and expose property * limit zoom with max target box * use calibration to determine zoom levels * zoom logic fix * docs * add tapo c200 camera * fix initial absolute zoom * small zoom logic fix * better invalid velocity checks * fix test * really fix test this time
2023-10-22 18:59:13 +02:00
and self.ptz_autotracker_thread.ptz_autotracker.autotracker_init[
self.name
]
and self.ptz_autotracker_thread.ptz_autotracker.tracked_object[
self.name
]
is not None
and obj["id"]
== self.ptz_autotracker_thread.ptz_autotracker.tracked_object[
self.name
].obj_data["id"]
Autotracking bugfixes and zooming updates (#8103) * zoom in/out in search for lost objects * predicted box should not be empty * clean up and update zoom logic * only zoom if enabled * more cleanup * check for valid velocity when zooming * only try absolute zoom in if obj area has changed * zoom logic * don't enqueue lost object zoom if already at limit * don't disable motion boxes during ptz moves * velocity threshold based on move coefficients * fix area zoom logic * disable debug zoom * don't process objects if ptz moving * recalc with exponent * change exponent * remove lost object zooming * increase distance threshold for stationary object * increase distance threshold constant * only zoom out if nonzero * camera name in all debug logging * add camera name to debug logging * camera variable name consistency * update calibration behavior and docs * docs and better zooming * more sensible target values * docs wording * fix velocity threshold variable * zooming tweaks and remove iou for current objects * debug and docs * get valid velocity * include zero * additional debug statements * add zoom hysteresis * zoom on initial move if relative * only update target box if we actually zoom * merge dev * use getattr instead of get * increase distance threshold * reverse logic * get_camera_status after preset move to store zoom * final tweaks and docs * use constants and catch possible debug exception * adjust zoom factor exponent * don't run motion estimation when calling preset * adjust dimension threshold * use numpy for velocity estimate calcs * more numpy conversion * fix numpy shapes * numpy zeros dimension * more zoom out conditions * fix velocity bug * ensure init has been called in debug view * ensure onvif init if enabling by mqtt * change default hysteresis values * recalc relative zoom value * zoom out value * try to zoom when object isn't moving * try zoom when tracked object is not moving * don't try to zoom every time * negate zoom out condition when needed * hysteresis constants for absolute zooming * update zoom conditions * don't recalc target box on zoom only * zoom out if above area threshold * don't print zooming debug for stationary obj * revamp zooming to use area moving average * zooming tweaks and expose property * limit zoom with max target box * use calibration to determine zoom levels * zoom logic fix * docs * add tapo c200 camera * fix initial absolute zoom * small zoom logic fix * better invalid velocity checks * fix test * really fix test this time
2023-10-22 18:59:13 +02:00
and obj["frame_time"] == frame_time
):
thickness = 5
color = self.config.model.colormap[obj["label"]]
# debug autotracking zooming - show the zoom factor box
if (
self.camera_config.onvif.autotracking.zooming
!= ZoomingModeEnum.disabled
):
max_target_box = self.ptz_autotracker_thread.ptz_autotracker.tracked_object_metrics[
self.name
]["max_target_box"]
side_length = max_target_box * (
max(
self.camera_config.detect.width,
self.camera_config.detect.height,
)
)
centroid_x = (obj["box"][0] + obj["box"][2]) // 2
centroid_y = (obj["box"][1] + obj["box"][3]) // 2
top_left = (
int(centroid_x - side_length // 2),
int(centroid_y - side_length // 2),
)
bottom_right = (
int(centroid_x + side_length // 2),
int(centroid_y + side_length // 2),
)
cv2.rectangle(
frame_copy,
top_left,
bottom_right,
(255, 255, 0),
2,
)
2020-10-11 19:16:05 +02:00
# draw the bounding boxes on the frame
2021-02-17 14:23:32 +01:00
box = obj["box"]
text = (
obj["label"]
if (
not obj.get("sub_label")
or not is_label_printable(obj["sub_label"][0])
)
else obj["sub_label"][0]
)
2021-02-17 14:23:32 +01:00
draw_box_with_label(
frame_copy,
box[0],
box[1],
box[2],
box[3],
text,
f"{obj['score']:.0%} {int(obj['area'])}",
2021-02-17 14:23:32 +01:00
thickness=thickness,
color=color,
)
# draw any attributes
for attribute in obj["current_attributes"]:
box = attribute["box"]
draw_box_with_label(
frame_copy,
box[0],
box[1],
box[2],
box[3],
attribute["label"],
f"{attribute['score']:.0%}",
thickness=thickness,
color=color,
)
2021-02-17 14:23:32 +01:00
if draw_options.get("regions"):
for region in regions:
2021-02-17 14:23:32 +01:00
cv2.rectangle(
frame_copy,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
2021-02-17 14:23:32 +01:00
if draw_options.get("zones"):
for name, zone in self.camera_config.zones.items():
2021-02-17 14:23:32 +01:00
thickness = (
8
if any(
name in obj["current_zones"] for obj in tracked_objects.values()
2021-02-17 14:23:32 +01:00
)
else 2
)
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
2021-02-17 14:23:32 +01:00
if draw_options.get("motion_boxes"):
for m_box in motion_boxes:
2021-02-17 14:23:32 +01:00
cv2.rectangle(
frame_copy,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
2021-02-17 14:23:32 +01:00
if draw_options.get("timestamp"):
2021-06-24 23:02:46 +02:00
color = self.camera_config.timestamp_style.color
draw_timestamp(
2021-02-17 14:23:32 +01:00
frame_copy,
frame_time,
2021-06-15 22:19:49 +02:00
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_thickness=self.camera_config.timestamp_style.thickness,
2021-09-04 23:39:56 +02:00
font_color=(color.blue, color.green, color.red),
2021-06-15 22:19:49 +02:00
position=self.camera_config.timestamp_style.position,
2021-02-17 14:23:32 +01:00
)
2020-10-11 19:16:05 +02:00
return frame_copy
2020-11-25 17:37:41 +01:00
def finished(self, obj_id):
del self.tracked_objects[obj_id]
2022-04-18 13:52:13 +02:00
def on(self, event_type: str, callback: Callable[[dict], None]):
2020-09-07 19:17:42 +02:00
self.callbacks[event_type].append(callback)
def update(
self,
frame_name: str,
frame_time: float,
current_detections: dict[str, dict[str, any]],
motion_boxes: list[tuple[int, int, int, int]],
regions: list[tuple[int, int, int, int]],
):
2021-02-17 14:23:32 +01:00
current_frame = self.frame_manager.get(
frame_name, self.camera_config.frame_shape_yuv
2021-02-17 14:23:32 +01:00
)
2020-09-07 19:17:42 +02:00
tracked_objects = self.tracked_objects.copy()
current_ids = set(current_detections.keys())
previous_ids = set(tracked_objects.keys())
removed_ids = previous_ids.difference(current_ids)
new_ids = current_ids.difference(previous_ids)
updated_ids = current_ids.intersection(previous_ids)
2020-09-07 19:17:42 +02:00
for id in new_ids:
new_obj = tracked_objects[id] = TrackedObject(
self.config.model,
2021-08-16 15:02:04 +02:00
self.camera_config,
self.frame_cache,
current_detections[id],
2021-02-17 14:23:32 +01:00
)
2020-09-07 19:17:42 +02:00
# call event handlers
2021-02-17 14:23:32 +01:00
for c in self.callbacks["start"]:
c(self.name, new_obj, frame_name)
2020-09-07 19:17:42 +02:00
for id in updated_ids:
updated_obj = tracked_objects[id]
thumb_update, significant_update, autotracker_update = updated_obj.update(
frame_time, current_detections[id], current_frame is not None
2021-07-07 14:02:36 +02:00
)
if autotracker_update or significant_update:
for c in self.callbacks["autotrack"]:
c(self.name, updated_obj, frame_name)
if thumb_update and current_frame is not None:
2020-12-20 14:19:18 +01:00
# ensure this frame is stored in the cache
2021-02-17 14:23:32 +01:00
if (
updated_obj.thumbnail_data["frame_time"] == frame_time
and frame_time not in self.frame_cache
):
2020-12-20 14:19:18 +01:00
self.frame_cache[frame_time] = np.copy(current_frame)
2021-02-17 14:23:32 +01:00
updated_obj.last_updated = frame_time
2021-02-17 14:23:32 +01:00
2022-02-08 14:31:07 +01:00
# if it has been more than 5 seconds since the last thumb update
2021-07-07 14:02:36 +02:00
# and the last update is greater than the last publish or
2022-02-08 14:31:07 +01:00
# the object has changed significantly
2021-02-17 14:23:32 +01:00
if (
frame_time - updated_obj.last_published > 5
and updated_obj.last_updated > updated_obj.last_published
2022-02-08 14:31:07 +01:00
) or significant_update:
2020-12-20 14:19:18 +01:00
# call event handlers
2021-02-17 14:23:32 +01:00
for c in self.callbacks["update"]:
c(self.name, updated_obj, frame_name)
updated_obj.last_published = frame_time
2020-09-07 19:17:42 +02:00
for id in removed_ids:
# publish events to mqtt
removed_obj = tracked_objects[id]
if "end_time" not in removed_obj.obj_data:
2021-02-17 14:23:32 +01:00
removed_obj.obj_data["end_time"] = frame_time
for c in self.callbacks["end"]:
c(self.name, removed_obj, frame_name)
2020-09-07 19:17:42 +02:00
# TODO: can i switch to looking this up and only changing when an event ends?
2020-09-07 19:17:42 +02:00
# maintain best objects
camera_activity: dict[str, list[any]] = {
"motion": len(motion_boxes) > 0,
"objects": [],
}
for obj in tracked_objects.values():
2021-02-17 14:23:32 +01:00
object_type = obj.obj_data["label"]
active = obj.is_active()
if not obj.false_positive:
label = object_type
sub_label = None
if obj.obj_data.get("sub_label"):
if (
obj.obj_data.get("sub_label")[0]
in self.config.model.all_attributes
):
label = obj.obj_data["sub_label"][0]
else:
label = f"{object_type}-verified"
sub_label = obj.obj_data["sub_label"][0]
camera_activity["objects"].append(
{
"id": obj.obj_data["id"],
"label": label,
"stationary": not active,
"area": obj.obj_data["area"],
"ratio": obj.obj_data["ratio"],
"score": obj.obj_data["score"],
"sub_label": sub_label,
}
)
# if we don't have access to the current frame or
# if the object's thumbnail is not from the current frame, skip
if (
current_frame is None
or obj.thumbnail_data is None
or obj.false_positive
or obj.thumbnail_data["frame_time"] != frame_time
):
2020-09-07 19:17:42 +02:00
continue
2020-09-07 19:17:42 +02:00
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
2021-02-17 14:23:32 +01:00
if (
is_better_thumbnail(
object_type,
2021-02-17 14:23:32 +01:00
current_best.thumbnail_data,
obj.thumbnail_data,
self.camera_config.frame_shape,
)
or (now - current_best.thumbnail_data["frame_time"])
> self.camera_config.best_image_timeout
):
2020-11-10 04:31:45 +01:00
self.best_objects[object_type] = obj
2021-02-17 14:23:32 +01:00
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_name)
2020-09-07 19:17:42 +02:00
else:
2020-11-10 04:31:45 +01:00
self.best_objects[object_type] = obj
2021-02-17 14:23:32 +01:00
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_name)
for c in self.callbacks["camera_activity"]:
c(self.name, camera_activity)
2020-09-07 19:17:42 +02:00
# update overall camera state for each object type
obj_counter = Counter(
obj.obj_data["label"]
for obj in tracked_objects.values()
if not obj.false_positive
)
active_obj_counter = Counter(
obj.obj_data["label"]
for obj in tracked_objects.values()
if not obj.false_positive and obj.active
)
# keep track of all labels detected for this camera
total_label_count = 0
total_active_label_count = 0
# report on all detected objects
2020-09-07 19:17:42 +02:00
for obj_name, count in obj_counter.items():
total_label_count += count
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
2021-02-17 14:23:32 +01:00
for c in self.callbacks["object_status"]:
c(self.name, obj_name, count)
2020-09-07 19:17:42 +02:00
# update the active count on all detected objects
# To ensure we emit 0's if all objects are stationary, we need to loop
# over the set of all objects, not just active ones.
for obj_name in set(obj_counter):
count = active_obj_counter[obj_name]
total_active_label_count += count
if count != self.active_object_counts[obj_name]:
self.active_object_counts[obj_name] = count
for c in self.callbacks["active_object_status"]:
c(self.name, obj_name, count)
# publish for all labels detected for this camera
if total_label_count != self.object_counts.get("all"):
self.object_counts["all"] = total_label_count
for c in self.callbacks["object_status"]:
c(self.name, "all", total_label_count)
# publish active label counts for this camera
if total_active_label_count != self.active_object_counts.get("all"):
self.active_object_counts["all"] = total_active_label_count
for c in self.callbacks["active_object_status"]:
c(self.name, "all", total_active_label_count)
# expire any objects that are >0 and no longer detected
2021-02-17 14:23:32 +01:00
expired_objects = [
obj_name
for obj_name, count in self.object_counts.items()
if count > 0 and obj_name not in obj_counter
2021-02-17 14:23:32 +01:00
]
2020-09-07 19:17:42 +02:00
for obj_name in expired_objects:
# Ignore the artificial all label
if obj_name == "all":
continue
self.object_counts[obj_name] = 0
2021-02-17 14:23:32 +01:00
for c in self.callbacks["object_status"]:
c(self.name, obj_name, 0)
# Only publish if the object was previously active.
if self.active_object_counts[obj_name] > 0:
for c in self.callbacks["active_object_status"]:
c(self.name, obj_name, 0)
self.active_object_counts[obj_name] = 0
2021-02-17 14:23:32 +01:00
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[obj_name], frame_name)
# cleanup thumbnail frame cache
current_thumb_frames = {
obj.thumbnail_data["frame_time"]
for obj in tracked_objects.values()
if not obj.false_positive and obj.thumbnail_data is not None
}
current_best_frames = {
obj.thumbnail_data["frame_time"] for obj in self.best_objects.values()
}
2021-02-17 14:23:32 +01:00
thumb_frames_to_delete = [
t
for t in self.frame_cache.keys()
if t not in current_thumb_frames and t not in current_best_frames
2021-02-17 14:23:32 +01:00
]
for t in thumb_frames_to_delete:
2020-11-11 23:55:50 +01:00
del self.frame_cache[t]
2020-10-11 19:16:05 +02:00
with self.current_frame_lock:
self.tracked_objects = tracked_objects
self.motion_boxes = motion_boxes
self.regions = regions
if current_frame is not None:
self.current_frame_time = frame_time
self._current_frame = current_frame
if self.previous_frame_id is not None:
self.frame_manager.close(self.previous_frame_id)
self.previous_frame_id = frame_name
2020-09-07 19:17:42 +02:00
2021-02-17 14:23:32 +01:00
2020-02-16 04:07:54 +01:00
class TrackedObjectProcessor(threading.Thread):
2021-02-17 14:23:32 +01:00
def __init__(
self,
config: FrigateConfig,
dispatcher: Dispatcher,
2021-02-17 14:23:32 +01:00
tracked_objects_queue,
ptz_autotracker_thread,
2021-02-17 14:23:32 +01:00
stop_event,
):
super().__init__(name="detected_frames_processor")
self.config = config
self.dispatcher = dispatcher
2020-02-16 04:07:54 +01:00
self.tracked_objects_queue = tracked_objects_queue
self.stop_event: MpEvent = stop_event
self.camera_states: dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
2022-05-15 14:45:04 +02:00
self.last_motion_detected: dict[str, float] = {}
self.ptz_autotracker_thread = ptz_autotracker_thread
self.requestor = InterProcessRequestor()
self.detection_publisher = DetectionPublisher(DetectionTypeEnum.video)
self.event_sender = EventUpdatePublisher()
self.event_end_subscriber = EventEndSubscriber()
2020-09-07 19:17:42 +02:00
self.camera_activity: dict[str, dict[str, any]] = {}
# {
# 'zone_name': {
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(dict))
self.active_zone_data = defaultdict(lambda: defaultdict(dict))
def start(camera: str, obj: TrackedObject, frame_name: str):
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.start,
camera,
frame_name,
obj.to_dict(),
)
)
2020-09-07 19:17:42 +02:00
def update(camera: str, obj: TrackedObject, frame_name: str):
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
2020-12-20 14:19:18 +01:00
after = obj.to_dict()
2021-02-17 14:23:32 +01:00
message = {
"before": obj.previous,
"after": after,
"type": "new" if obj.previous["false_positive"] else "update",
}
2022-11-26 03:10:09 +01:00
self.dispatcher.publish("events", json.dumps(message), retain=False)
2020-12-20 14:19:18 +01:00
obj.previous = after
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.update,
camera,
frame_name,
obj.to_dict(include_thumbnail=True),
)
)
2020-09-07 19:17:42 +02:00
def autotrack(camera: str, obj: TrackedObject, frame_name: str):
self.ptz_autotracker_thread.ptz_autotracker.autotrack_object(camera, obj)
def end(camera: str, obj: TrackedObject, frame_name: str):
# populate has_snapshot
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
# write the snapshot to disk
if obj.has_snapshot:
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height,
quality=snapshot_config.quality,
)
if jpg_bytes is None:
logger.warning(f"Unable to save snapshot for {obj.obj_data['id']}.")
else:
with open(
os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"),
"wb",
) as j:
j.write(jpg_bytes)
# write clean snapshot if enabled
if snapshot_config.clean_copy:
png_bytes = obj.get_clean_png()
if png_bytes is None:
logger.warning(
f"Unable to save clean snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"{camera}-{obj.obj_data['id']}-clean.png",
),
"wb",
) as p:
p.write(png_bytes)
2020-11-26 03:22:54 +01:00
if not obj.false_positive:
2021-02-17 14:23:32 +01:00
message = {
"before": obj.previous,
"after": obj.to_dict(),
"type": "end",
}
2022-12-09 02:00:44 +01:00
self.dispatcher.publish("events", json.dumps(message), retain=False)
self.ptz_autotracker_thread.ptz_autotracker.end_object(camera, obj)
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.end,
camera,
frame_name,
obj.to_dict(include_thumbnail=True),
)
)
2021-02-17 14:23:32 +01:00
def snapshot(camera, obj: TrackedObject, frame_name: str):
mqtt_config: MqttConfig = self.config.cameras[camera].mqtt
if mqtt_config.enabled and self.should_mqtt_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
2021-02-17 14:23:32 +01:00
height=mqtt_config.height,
2021-07-02 14:47:03 +02:00
quality=mqtt_config.quality,
)
2021-02-09 14:35:41 +01:00
if jpg_bytes is None:
2021-02-17 14:23:32 +01:00
logger.warning(
f"Unable to send mqtt snapshot for {obj.obj_data['id']}."
)
2021-02-09 14:35:41 +01:00
else:
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{camera}/{obj.obj_data['label']}/snapshot",
2021-02-17 14:23:32 +01:00
jpg_bytes,
retain=True,
)
2020-09-07 19:17:42 +02:00
def object_status(camera, object_name, status):
2022-11-26 03:10:09 +01:00
self.dispatcher.publish(f"{camera}/{object_name}", status, retain=False)
2020-09-07 19:17:42 +02:00
def active_object_status(camera, object_name, status):
self.dispatcher.publish(
f"{camera}/{object_name}/active", status, retain=False
)
def camera_activity(camera, activity):
last_activity = self.camera_activity.get(camera)
if not last_activity or activity != last_activity:
self.camera_activity[camera] = activity
self.requestor.send_data(UPDATE_CAMERA_ACTIVITY, self.camera_activity)
for camera in self.config.cameras.keys():
camera_state = CameraState(
camera, self.config, self.frame_manager, self.ptz_autotracker_thread
)
2021-02-17 14:23:32 +01:00
camera_state.on("start", start)
camera_state.on("autotrack", autotrack)
2021-02-17 14:23:32 +01:00
camera_state.on("update", update)
camera_state.on("end", end)
camera_state.on("snapshot", snapshot)
camera_state.on("object_status", object_status)
camera_state.on("active_object_status", active_object_status)
camera_state.on("camera_activity", camera_activity)
2020-09-07 19:17:42 +02:00
self.camera_states[camera] = camera_state
def should_save_snapshot(self, camera, obj: TrackedObject):
if obj.false_positive:
return False
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
if not snapshot_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = snapshot_config.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
2021-02-17 14:23:32 +01:00
logger.debug(
f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
def should_retain_recording(self, camera: str, obj: TrackedObject):
if obj.false_positive:
return False
record_config: RecordConfig = self.config.cameras[camera].record
# Recording is disabled
if not record_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# If the object is not considered an alert or detection
review_config = self.config.cameras[camera].review
if not (
(
obj.obj_data["label"] in review_config.alerts.labels
and (
not review_config.alerts.required_zones
or set(obj.entered_zones) & set(review_config.alerts.required_zones)
)
)
or (
2024-09-17 01:23:10 +02:00
(
not review_config.detections.labels
or obj.obj_data["label"] in review_config.detections.labels
)
and (
not review_config.detections.required_zones
or set(obj.entered_zones)
& set(review_config.detections.required_zones)
2024-09-17 01:23:10 +02:00
)
)
):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not qualify as an alert or detection"
)
return False
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
2021-02-17 14:23:32 +01:00
logger.debug(
f"Not sending mqtt for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
2022-05-15 14:45:04 +02:00
def update_mqtt_motion(self, camera, frame_time, motion_boxes):
# publish if motion is currently being detected
if motion_boxes:
2022-05-15 14:45:04 +02:00
# only send ON if motion isn't already active
if self.last_motion_detected.get(camera, 0) == 0:
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{camera}/motion",
"ON",
retain=False,
)
# always updated latest motion
2022-05-15 14:45:04 +02:00
self.last_motion_detected[camera] = frame_time
elif self.last_motion_detected.get(camera, 0) > 0:
mqtt_delay = self.config.cameras[camera].motion.mqtt_off_delay
# If no motion, make sure the off_delay has passed
2022-05-15 14:45:04 +02:00
if frame_time - self.last_motion_detected.get(camera, 0) >= mqtt_delay:
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{camera}/motion",
"OFF",
retain=False,
)
# reset the last_motion so redundant `off` commands aren't sent
2022-05-15 14:45:04 +02:00
self.last_motion_detected[camera] = 0
2020-02-16 04:07:54 +01:00
def get_best(self, camera, label):
2020-11-12 00:44:51 +01:00
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
2021-02-17 14:23:32 +01:00
best["frame"] = camera_state.frame_cache.get(
best_obj.thumbnail_data["frame_time"]
)
2020-11-12 00:44:51 +01:00
return best
2020-02-16 04:07:54 +01:00
else:
return {}
def get_current_frame(
self, camera: str, draw_options: dict[str, any] = {}
) -> Optional[np.ndarray]:
if camera == "birdseye":
return self.frame_manager.get(
"birdseye",
(self.config.birdseye.height * 3 // 2, self.config.birdseye.width),
)
if camera not in self.camera_states:
return None
return self.camera_states[camera].get_current_frame(draw_options)
2020-02-16 04:07:54 +01:00
def get_current_frame_time(self, camera) -> int:
"""Returns the latest frame time for a given camera."""
return self.camera_states[camera].current_frame_time
def run(self):
while not self.stop_event.is_set():
2020-08-02 15:46:36 +02:00
try:
2021-02-17 14:23:32 +01:00
(
camera,
frame_name,
2021-02-17 14:23:32 +01:00
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.tracked_objects_queue.get(True, 1)
2020-08-02 15:46:36 +02:00
except queue.Empty:
continue
2020-09-07 19:17:42 +02:00
camera_state = self.camera_states[camera]
2021-02-17 14:23:32 +01:00
camera_state.update(
frame_name, frame_time, current_tracked_objects, motion_boxes, regions
2021-02-17 14:23:32 +01:00
)
2020-09-07 19:17:42 +02:00
2022-05-15 14:45:04 +02:00
self.update_mqtt_motion(camera, frame_time, motion_boxes)
2021-12-11 15:59:54 +01:00
tracked_objects = [
o.to_dict() for o in camera_state.tracked_objects.values()
]
# publish info on this frame
self.detection_publisher.publish(
(
camera,
frame_name,
frame_time,
2021-12-11 15:59:54 +01:00
tracked_objects,
motion_boxes,
regions,
)
)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter(
obj.obj_data["label"]
for obj in camera_state.tracked_objects.values()
if zone in obj.current_zones and not obj.false_positive
)
active_obj_counter = Counter(
obj.obj_data["label"]
for obj in camera_state.tracked_objects.values()
if (
zone in obj.current_zones
and not obj.false_positive
and obj.active
)
)
total_label_count = 0
total_active_label_count = 0
# update counts and publish status
for label in set(self.zone_data[zone].keys()) | set(obj_counter.keys()):
# Ignore the artificial all label
if label == "all":
continue
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
active_zone_label = self.active_zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
current_active_count = sum(active_zone_label.values())
2021-02-17 14:23:32 +01:00
zone_label[camera] = (
obj_counter[label] if label in obj_counter else 0
)
active_zone_label[camera] = (
active_obj_counter[label]
if label in active_obj_counter
else 0
)
new_count = sum(zone_label.values())
new_active_count = sum(active_zone_label.values())
if new_count != current_count:
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{zone}/{label}",
2021-02-17 14:23:32 +01:00
new_count,
retain=False,
)
if new_active_count != current_active_count:
self.dispatcher.publish(
f"{zone}/{label}/active",
new_active_count,
retain=False,
)
# Set the count for the /zone/all topic.
total_label_count += new_count
total_active_label_count += new_active_count
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
active_zone_label[camera] = active_obj_counter[label]
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{zone}/{label}",
2021-02-17 14:23:32 +01:00
obj_counter[label],
retain=False,
)
self.dispatcher.publish(
f"{zone}/{label}/active",
active_obj_counter[label],
retain=False,
)
2020-11-25 17:37:41 +01:00
# Set the count for the /zone/all topic.
total_label_count += obj_counter[label]
total_active_label_count += active_obj_counter[label]
# if we have previously published a count for this zone all labels
zone_label = self.zone_data[zone]["all"]
active_zone_label = self.active_zone_data[zone]["all"]
if camera in zone_label:
current_count = sum(zone_label.values())
current_active_count = sum(active_zone_label.values())
zone_label[camera] = total_label_count
active_zone_label[camera] = total_active_label_count
new_count = sum(zone_label.values())
new_active_count = sum(active_zone_label.values())
if new_count != current_count:
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{zone}/all",
new_count,
retain=False,
)
if new_active_count != current_active_count:
self.dispatcher.publish(
f"{zone}/all/active",
new_active_count,
retain=False,
)
# if this is a new zone all label for this camera
else:
zone_label[camera] = total_label_count
active_zone_label[camera] = total_active_label_count
self.dispatcher.publish(
2022-11-26 03:10:09 +01:00
f"{zone}/all",
total_label_count,
retain=False,
)
self.dispatcher.publish(
f"{zone}/all/active",
total_active_label_count,
retain=False,
)
2020-11-25 17:37:41 +01:00
# cleanup event finished queue
while not self.stop_event.is_set():
update = self.event_end_subscriber.check_for_update(timeout=0.01)
if not update:
break
event_id, camera, _ = update
2020-11-25 17:37:41 +01:00
self.camera_states[camera].finished(event_id)
self.requestor.stop()
self.detection_publisher.stop()
self.event_sender.stop()
self.event_end_subscriber.stop()
logger.info("Exiting object processor...")