blakeblackshear.frigate/frigate/motion.py

161 lines
6.3 KiB
Python
Raw Normal View History

2020-02-09 14:39:24 +01:00
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
2020-02-09 14:39:24 +01:00
2020-11-04 13:31:25 +01:00
2021-02-17 14:23:32 +01:00
class MotionDetector:
def __init__(
self,
frame_shape,
config: MotionConfig,
improve_contrast_enabled,
motion_threshold,
motion_contour_area,
):
self.config = config
2020-10-10 17:07:14 +02:00
self.frame_shape = frame_shape
2021-02-17 14:23:32 +01:00
self.resize_factor = frame_shape[0] / config.frame_height
self.motion_frame_size = (
config.frame_height,
config.frame_height * frame_shape[1] // frame_shape[0],
)
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
self.avg_delta = np.zeros(self.motion_frame_size, np.float32)
2020-02-09 14:39:24 +01:00
self.motion_frame_count = 0
self.frame_counter = 0
2021-02-17 14:23:32 +01:00
resized_mask = cv2.resize(
2021-06-24 07:51:41 +02:00
config.mask,
2021-02-17 14:23:32 +01:00
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
self.mask = np.where(resized_mask == [0])
2021-11-07 20:16:38 +01:00
self.save_images = False
self.improve_contrast = improve_contrast_enabled
self.threshold = motion_threshold
self.contour_area = motion_contour_area
2020-02-09 14:39:24 +01:00
def detect(self, frame):
motion_boxes = []
2021-02-17 14:23:32 +01:00
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
2020-10-10 17:07:14 +02:00
2020-02-09 14:39:24 +01:00
# resize frame
2021-02-17 14:23:32 +01:00
resized_frame = cv2.resize(
gray,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
2020-02-09 14:39:24 +01:00
2021-11-04 17:01:12 +01:00
# Improve contrast
if self.improve_contrast.value:
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
# don't adjust if the image is a single color
if minval < maxval:
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (
((resized_frame - minval) / (maxval - minval)) * 255
).astype(np.uint8)
2020-02-16 04:07:54 +01:00
# mask frame
2020-10-10 17:07:14 +02:00
resized_frame[self.mask] = [255]
2020-02-16 04:07:54 +01:00
2020-02-09 14:39:24 +01:00
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
if self.frame_counter < 30:
self.frame_counter += 1
else:
2021-11-07 20:16:38 +01:00
if self.save_images:
self.frame_counter += 1
2020-02-09 14:39:24 +01:00
# compare to average
2020-10-10 17:07:14 +02:00
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
2020-02-09 14:39:24 +01:00
# compute the average delta over the past few frames
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
2020-02-09 14:39:24 +01:00
# compute the threshold image for the current frame
2021-02-17 14:23:32 +01:00
current_thresh = cv2.threshold(
frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY
2021-02-17 14:23:32 +01:00
)[1]
2020-02-09 14:39:24 +01:00
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
2020-02-09 14:39:24 +01:00
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
2021-02-17 14:23:32 +01:00
thresh = cv2.threshold(
avg_delta_image, self.threshold.value, 255, cv2.THRESH_BINARY
2021-02-17 14:23:32 +01:00
)[1]
2020-02-09 14:39:24 +01:00
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
2021-11-07 20:16:38 +01:00
thresh_dilated = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
2020-02-09 14:39:24 +01:00
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > self.contour_area.value:
2020-02-09 14:39:24 +01:00
x, y, w, h = cv2.boundingRect(c)
2021-02-17 14:23:32 +01:00
motion_boxes.append(
(
int(x * self.resize_factor),
int(y * self.resize_factor),
int((x + w) * self.resize_factor),
int((y + h) * self.resize_factor),
)
)
2021-11-07 20:16:38 +01:00
if self.save_images:
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
# print("--------")
# print(self.frame_counter)
for c in cnts:
contour_area = cv2.contourArea(c)
if contour_area > self.contour_area.value:
2021-11-07 20:16:38 +01:00
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(
thresh_dilated,
(x, y),
(x + w, y + h),
(0, 0, 255),
2,
)
# print("--------")
image_row_1 = cv2.hconcat(
[
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
]
)
image_row_2 = cv2.hconcat(
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
)
combined_image = cv2.vconcat([image_row_1, image_row_2])
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
2020-02-09 14:39:24 +01:00
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
2021-02-17 14:23:32 +01:00
cv2.accumulateWeighted(
resized_frame, self.avg_frame, self.config.frame_alpha
)
2020-02-09 14:39:24 +01:00
else:
# when no motion, just keep averaging the frames together
2021-02-17 14:23:32 +01:00
cv2.accumulateWeighted(
resized_frame, self.avg_frame, self.config.frame_alpha
)
2020-02-09 14:39:24 +01:00
self.motion_frame_count = 0
2020-11-04 13:31:25 +01:00
return motion_boxes