blakeblackshear.frigate/frigate/object_processing.py

355 lines
16 KiB
Python
Raw Normal View History

2020-02-16 04:07:54 +01:00
import json
import hashlib
import datetime
import time
2020-02-16 04:07:54 +01:00
import copy
import cv2
import threading
2020-08-02 15:46:36 +02:00
import queue
2020-02-16 04:07:54 +01:00
import numpy as np
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, PlasmaFrameManager
2020-02-16 15:49:43 +01:00
from frigate.edgetpu import load_labels
2020-09-07 19:17:42 +02:00
from typing import Callable, Dict
from statistics import mean, median
2020-02-16 04:07:54 +01:00
2020-02-18 12:55:06 +01:00
PATH_TO_LABELS = '/labelmap.txt'
2020-02-16 04:07:54 +01:00
2020-02-16 15:49:43 +01:00
LABELS = load_labels(PATH_TO_LABELS)
2020-02-16 04:07:54 +01:00
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
2020-07-25 14:44:07 +02:00
def zone_filtered(obj, object_config):
object_name = obj['label']
object_filters = object_config.get('filters', {})
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
return True
# if the score is lower than the threshold, skip
2020-09-07 19:17:42 +02:00
if obj_settings.get('threshold', 0) > obj['computed_score']:
2020-07-25 14:44:07 +02:00
return True
return False
2020-09-07 19:17:42 +02:00
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.zone_objects = defaultdict(lambda: [])
self.current_frame = np.zeros((720,1280,3), np.uint8)
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def false_positive(self, obj):
# once a true positive, always a true positive
if not obj.get('false_positive', True):
return False
2020-09-07 19:17:42 +02:00
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
frame_id = f"{self.name}{frame_time}"
self.current_frame = self.frame_manager.get(frame_id)
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
current_ids = tracked_objects.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
# check if the object is in the zone and not filtered
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0
and not zone_filtered(obj, zone.get('filters', {}))):
current_zones.append(name)
obj['zones'] = current_zones
# draw on the frame
if not self.current_frame is None:
# draw the bounding boxes on the frame
for obj in self.tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(self.current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(self.current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(self.current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in self.tracked_objects.values()]) else 2
cv2.drawContours(self.current_frame, [zone['contour']], -1, zone['color'], thickness)
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > current_best['score'] or (now - current_best['frame_time']) > 60:
obj['frame'] = np.copy(self.current_frame)
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
else:
obj['frame'] = np.copy(self.current_frame)
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
for c in self.callbacks['snapshot']:
2020-09-09 04:21:15 +02:00
c(self.name, self.best_objects[obj_name])
2020-09-07 19:17:42 +02:00
2020-02-16 04:07:54 +01:00
class TrackedObjectProcessor(threading.Thread):
2020-08-02 15:46:36 +02:00
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
2020-02-16 04:07:54 +01:00
threading.Thread.__init__(self)
2020-07-25 14:44:07 +02:00
self.camera_config = camera_config
self.zone_config = zone_config
2020-02-16 04:07:54 +01:00
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
2020-07-09 13:57:16 +02:00
self.event_queue = event_queue
2020-08-02 15:46:36 +02:00
self.stop_event = stop_event
2020-09-07 19:17:42 +02:00
self.camera_states: Dict[str, CameraState] = {}
self.plasma_client = PlasmaFrameManager(self.stop_event)
def start(camera, obj):
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps({x: obj[x] for x in obj if x not in ['frame']}), retain=False)
self.event_queue.put(('start', camera, obj))
def update(camera, obj):
pass
def end(camera, obj):
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps({x: obj[x] for x in obj if x not in ['frame']}), retain=False)
self.event_queue.put(('end', camera, obj))
def snapshot(camera, obj):
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.plasma_client)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
2020-02-16 04:07:54 +01:00
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'current_frame_time': 0.0,
'object_id': None
2020-02-16 04:07:54 +01:00
})
2020-09-07 19:17:42 +02:00
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
# set colors for zones
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(self.zone_config.keys()))
for i, zone in enumerate(self.zone_config.keys()):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
2020-07-25 14:44:07 +02:00
# create zone contours
2020-09-07 19:17:42 +02:00
for zone_name, config in zone_config.items():
2020-07-25 14:44:07 +02:00
for camera, camera_zone_config in config.items():
2020-09-07 19:17:42 +02:00
camera_zone = {}
camera_zone['color'] = zone_colors[zone_name]
2020-07-25 14:44:07 +02:00
coordinates = camera_zone_config['coordinates']
if isinstance(coordinates, list):
2020-09-07 19:17:42 +02:00
camera_zone['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
2020-07-25 14:44:07 +02:00
elif isinstance(coordinates, str):
points = coordinates.split(',')
2020-09-07 19:17:42 +02:00
camera_zone['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
2020-07-25 14:44:07 +02:00
else:
2020-09-07 19:17:42 +02:00
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
self.camera_config[camera]['zones'][zone_name] = camera_zone
2020-02-16 04:07:54 +01:00
def get_best(self, camera, label):
2020-09-07 19:17:42 +02:00
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]['frame']
2020-02-16 04:07:54 +01:00
else:
return None
def get_current_frame(self, camera):
2020-09-07 19:17:42 +02:00
return self.camera_states[camera].current_frame
2020-02-16 04:07:54 +01:00
def run(self):
while True:
2020-08-02 15:46:36 +02:00
if self.stop_event.is_set():
2020-08-08 14:39:57 +02:00
print(f"Exiting object processor...")
2020-08-02 15:46:36 +02:00
break
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
2020-09-07 19:17:42 +02:00
camera_state = self.camera_states[camera]
camera_state.update(frame_time, current_tracked_objects)
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
2020-09-09 04:13:14 +02:00
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
2020-09-07 19:17:42 +02:00
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
2020-07-25 14:44:07 +02:00
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)