blakeblackshear.frigate/frigate/object_detection.py

114 lines
5.2 KiB
Python
Raw Normal View History

2019-02-26 03:27:02 +01:00
import datetime
import cv2
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from . util import tonumpyarray
# TODO: make dynamic?
NUM_CLASSES = 90
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# do the actual object detection
def tf_detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
if debug:
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
vis_util.visualize_boxes_and_labels_on_image_array(
cropped_frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
score = scores[0, index]
if score > 0.5:
box = boxes[0, index].tolist()
objects.append({
'name': str(category_index.get(value).get('name')),
'score': float(score),
'ymin': int((box[0] * region_size) + region_y_offset),
'xmin': int((box[1] * region_size) + region_x_offset),
'ymax': int((box[2] * region_size) + region_y_offset),
'xmax': int((box[3] * region_size) + region_x_offset)
})
return objects
def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
min_person_area, debug):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait until motion is detected
motion_detected.wait()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# make a copy of the cropped frame
with frame_lock:
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects = tf_detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
for obj in objects:
# ignore persons below the size threshold
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
continue
obj['frame_time'] = frame_time
object_queue.put(obj)