2024-07-14 19:17:02 +02:00
|
|
|
import logging
|
|
|
|
import os
|
2025-01-19 15:16:43 +01:00
|
|
|
import subprocess
|
2024-07-14 19:17:02 +02:00
|
|
|
import urllib.request
|
2025-02-26 13:04:27 +01:00
|
|
|
|
2024-07-14 19:17:02 +02:00
|
|
|
import numpy as np
|
2025-02-26 13:04:27 +01:00
|
|
|
|
|
|
|
try:
|
|
|
|
from hailo_platform import (
|
|
|
|
HEF,
|
|
|
|
ConfigureParams,
|
|
|
|
FormatType,
|
|
|
|
HailoRTException,
|
|
|
|
HailoStreamInterface,
|
|
|
|
InferVStreams,
|
|
|
|
InputVStreamParams,
|
|
|
|
OutputVStreamParams,
|
|
|
|
VDevice,
|
|
|
|
)
|
|
|
|
except ModuleNotFoundError:
|
|
|
|
pass
|
|
|
|
|
2025-01-19 15:16:43 +01:00
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from typing_extensions import Literal
|
2025-02-26 13:04:27 +01:00
|
|
|
from typing import Dict, Optional, List
|
|
|
|
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
|
|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum, InputTensorEnum, PixelFormatEnum, InputDTypeEnum
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Setup logging
|
2024-07-14 19:17:02 +02:00
|
|
|
logger = logging.getLogger(__name__)
|
2025-02-26 13:04:27 +01:00
|
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
file_handler = logging.FileHandler('hailo_detector_debug.log')
|
|
|
|
file_handler.setLevel(logging.DEBUG)
|
|
|
|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
|
file_handler.setFormatter(formatter)
|
|
|
|
logger.addHandler(file_handler)
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Define the detector key for Hailo
|
2024-07-14 19:17:02 +02:00
|
|
|
DETECTOR_KEY = "hailo8l"
|
2025-02-26 13:04:27 +01:00
|
|
|
ARCH = None
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
def detect_hailo_arch():
|
|
|
|
try:
|
|
|
|
# Run the hailortcli command to get device information
|
|
|
|
result = subprocess.run(['hailortcli', 'fw-control', 'identify'], capture_output=True, text=True)
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Check if the command was successful
|
|
|
|
if result.returncode != 0:
|
|
|
|
print(f"Error running hailortcli: {result.stderr}")
|
|
|
|
return None
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Search for the "Device Architecture" line in the output
|
|
|
|
for line in result.stdout.split('\n'):
|
|
|
|
if "Device Architecture" in line:
|
|
|
|
if "HAILO8L" in line:
|
|
|
|
return "hailo8l"
|
|
|
|
elif "HAILO8" in line:
|
|
|
|
return "hailo8"
|
2025-01-09 13:26:56 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
print("Could not determine Hailo architecture from device information.")
|
|
|
|
return None
|
|
|
|
except Exception as e:
|
|
|
|
print(f"An error occurred while detecting Hailo architecture: {e}")
|
|
|
|
return None
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Configuration class for Hailo detector
|
|
|
|
class HailoDetectorConfig(BaseDetectorConfig):
|
|
|
|
type: Literal[DETECTOR_KEY] # Type of the detector
|
|
|
|
device: str = Field(default="PCIe", title="Device Type") # Device type (e.g., PCIe)
|
|
|
|
url: Optional[str] = Field(default=None, title="Custom Model URL")
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Hailo detector class implementation
|
|
|
|
class HailoDetector(DetectionApi):
|
|
|
|
type_key = DETECTOR_KEY # Set the type key to the Hailo detector key
|
|
|
|
|
2025-02-19 16:21:33 +01:00
|
|
|
def __init__(self, detector_config: HailoDetectorConfig):
|
2025-02-26 13:04:27 +01:00
|
|
|
print(f"[INIT] Starting HailoDetector initialization with config: {detector_config}")
|
|
|
|
logger.info(f"[INIT] Starting HailoDetector initialization with config: {detector_config}")
|
|
|
|
|
|
|
|
# Set global ARCH variable
|
|
|
|
global ARCH
|
|
|
|
ARCH = detect_hailo_arch()
|
|
|
|
logger.info(f"[INIT] Detected Hailo architecture: {ARCH}")
|
|
|
|
|
|
|
|
supported_models = [
|
|
|
|
ModelTypeEnum.ssd,
|
|
|
|
ModelTypeEnum.yolov9,
|
|
|
|
ModelTypeEnum.hailoyolo,
|
|
|
|
]
|
|
|
|
|
|
|
|
# Initialize device type and model path from the configuration
|
|
|
|
self.h8l_device_type = detector_config.device
|
|
|
|
self.h8l_model_path = detector_config.model.path
|
|
|
|
self.h8l_model_type = detector_config.model.model_type
|
|
|
|
|
|
|
|
# Set configuration based on model type
|
|
|
|
self.set_correct_config(self.h8l_model_type)
|
|
|
|
|
|
|
|
# Override with custom URL if provided
|
|
|
|
if hasattr(detector_config, "url") and detector_config.url:
|
|
|
|
self.model_url = detector_config.url
|
|
|
|
self.expected_model_filename = self.model_url.split('/')[-1]
|
|
|
|
|
|
|
|
self.check_and_prepare_model()
|
|
|
|
try:
|
|
|
|
# Validate device type
|
|
|
|
if self.h8l_device_type not in ["PCIe", "M.2"]:
|
|
|
|
raise ValueError(f"Unsupported device type: {self.h8l_device_type}")
|
|
|
|
|
|
|
|
# Initialize the Hailo device
|
|
|
|
logger.info("[INIT] Creating VDevice instance")
|
|
|
|
self.target = VDevice()
|
|
|
|
|
|
|
|
# Load the HEF (Hailo's binary format for neural networks)
|
|
|
|
logger.info(f"[INIT] Loading HEF from {self.h8l_model_path}")
|
|
|
|
self.hef = HEF(self.h8l_model_path)
|
|
|
|
|
|
|
|
# Create configuration parameters from the HEF
|
|
|
|
logger.info("[INIT] Creating configuration parameters")
|
|
|
|
self.configure_params = ConfigureParams.create_from_hef(
|
|
|
|
hef=self.hef, interface=HailoStreamInterface.PCIe
|
|
|
|
)
|
|
|
|
|
|
|
|
# Configure the device with the HEF
|
|
|
|
logger.info("[INIT] Configuring device with HEF")
|
|
|
|
self.network_groups = self.target.configure(self.hef, self.configure_params)
|
|
|
|
self.network_group = self.network_groups[0]
|
|
|
|
self.network_group_params = self.network_group.create_params()
|
|
|
|
|
|
|
|
# Create input and output virtual stream parameters
|
|
|
|
logger.info("[INIT] Creating input/output stream parameters")
|
|
|
|
self.input_vstream_params = InputVStreamParams.make(
|
|
|
|
self.network_group,
|
|
|
|
format_type=self.hef.get_input_vstream_infos()[0].format.type,
|
|
|
|
)
|
|
|
|
self.output_vstream_params = OutputVStreamParams.make(
|
|
|
|
self.network_group, format_type=getattr(FormatType, self.output_type)
|
|
|
|
)
|
|
|
|
|
|
|
|
# Get input and output stream information from the HEF
|
|
|
|
self.input_vstream_info = self.hef.get_input_vstream_infos()
|
|
|
|
self.output_vstream_info = self.hef.get_output_vstream_infos()
|
|
|
|
|
|
|
|
for i, info in enumerate(self.input_vstream_info):
|
|
|
|
logger.info(f"[INIT] Input Stream {i}: Name={info.name}, Format={info.format}, Shape={info.shape}")
|
|
|
|
|
|
|
|
for i, info in enumerate(self.output_vstream_info):
|
|
|
|
logger.info(f"[INIT] Output Stream {i}: Name={info.name}, Format={info.format}, Shape={info.shape}")
|
|
|
|
|
|
|
|
logger.info("Hailo device initialized successfully")
|
|
|
|
except HailoRTException as e:
|
|
|
|
logger.error(f"HailoRTException during initialization: {e}")
|
|
|
|
raise
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to initialize Hailo device: {e}")
|
|
|
|
raise
|
|
|
|
|
|
|
|
def set_correct_config(self, modelname):
|
|
|
|
if modelname == ModelTypeEnum.ssd:
|
|
|
|
self.h8l_model_height = 300
|
|
|
|
self.h8l_model_width = 300
|
|
|
|
self.h8l_tensor_format = InputTensorEnum.nhwc
|
|
|
|
self.h8l_pixel_format = PixelFormatEnum.rgb
|
|
|
|
self.h8l_input_dtype = InputDTypeEnum.float
|
|
|
|
self.cache_dir = "/config/model_cache/h8l_cache"
|
|
|
|
self.expected_model_filename = "ssd_mobilenet_v1.hef"
|
|
|
|
self.output_type = "FLOAT32"
|
|
|
|
|
|
|
|
if ARCH == "hailo8":
|
|
|
|
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/ssd_mobilenet_v1.hef"
|
|
|
|
else:
|
|
|
|
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/ssd_mobilenet_v1.hef"
|
|
|
|
else:
|
|
|
|
self.h8l_model_height = 640
|
|
|
|
self.h8l_model_width = 640
|
|
|
|
self.h8l_tensor_format = InputTensorEnum.nhwc
|
|
|
|
self.h8l_pixel_format = PixelFormatEnum.rgb # Default to RGB
|
|
|
|
self.h8l_input_dtype = InputDTypeEnum.int
|
|
|
|
self.cache_dir = "/config/model_cache/h8l_cache"
|
|
|
|
self.output_type = "FLOAT32"
|
|
|
|
|
|
|
|
if ARCH == "hailo8":
|
|
|
|
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/yolov8m.hef"
|
|
|
|
self.expected_model_filename = "yolov8m.hef"
|
|
|
|
else:
|
|
|
|
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/yolov8s.hef"
|
|
|
|
self.expected_model_filename = "yolov8s.hef"
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
def check_and_prepare_model(self):
|
|
|
|
logger.info(f"[CHECK_MODEL] Checking for model at {self.cache_dir}/{self.expected_model_filename}")
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Ensure cache directory exists
|
|
|
|
if not os.path.exists(self.cache_dir):
|
|
|
|
logger.info(f"[CHECK_MODEL] Creating cache directory: {self.cache_dir}")
|
|
|
|
os.makedirs(self.cache_dir)
|
|
|
|
|
|
|
|
# Check for the expected model file
|
|
|
|
model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
|
|
|
|
if not os.path.isfile(model_file_path):
|
|
|
|
logger.info(f"[CHECK_MODEL] Model not found at {model_file_path}, downloading from {self.model_url}")
|
|
|
|
urllib.request.urlretrieve(self.model_url, model_file_path)
|
|
|
|
logger.info(f"[CHECK_MODEL] Model downloaded to {model_file_path}")
|
|
|
|
else:
|
|
|
|
logger.info(f"[CHECK_MODEL] Model already exists at {model_file_path}")
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
self.h8l_model_path = model_file_path
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
def detect_raw(self, tensor_input):
|
|
|
|
logger.info("[DETECT_RAW] Starting detection")
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
if tensor_input is None:
|
|
|
|
error_msg = "[DETECT_RAW] The 'tensor_input' argument must be provided"
|
|
|
|
logger.error(error_msg)
|
|
|
|
raise ValueError(error_msg)
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Log input tensor information
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor type: {type(tensor_input)}")
|
|
|
|
|
|
|
|
if isinstance(tensor_input, np.ndarray):
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor shape: {tensor_input.shape}")
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor dtype: {tensor_input.dtype}")
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor min value: {np.min(tensor_input)}")
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor max value: {np.max(tensor_input)}")
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor mean value: {np.mean(tensor_input)}")
|
|
|
|
|
|
|
|
# Print sample of the tensor (first few elements)
|
|
|
|
flat_sample = tensor_input.flatten()[:10]
|
|
|
|
logger.info(f"[DETECT_RAW] Input tensor sample: {flat_sample}")
|
|
|
|
elif isinstance(tensor_input, list):
|
|
|
|
logger.info(f"[DETECT_RAW] Input is a list with length: {len(tensor_input)}")
|
|
|
|
tensor_input = np.array(tensor_input)
|
|
|
|
logger.info(f"[DETECT_RAW] Converted to array with shape: {tensor_input.shape}, dtype: {tensor_input.dtype}")
|
|
|
|
elif isinstance(tensor_input, dict):
|
|
|
|
logger.info(f"[DETECT_RAW] Input is a dictionary with keys: {tensor_input.keys()}")
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
input_data = tensor_input
|
|
|
|
logger.debug("[DETECT_RAW] Input data prepared for inference")
|
|
|
|
|
|
|
|
try:
|
|
|
|
logger.info("[DETECT_RAW] Creating inference pipeline")
|
|
|
|
with InferVStreams(
|
|
|
|
self.network_group,
|
|
|
|
self.input_vstream_params,
|
|
|
|
self.output_vstream_params,
|
|
|
|
) as infer_pipeline:
|
|
|
|
input_dict = {}
|
|
|
|
if isinstance(input_data, dict):
|
|
|
|
logger.info("[DETECT_RAW] Input is already a dictionary, using as-is")
|
|
|
|
input_dict = input_data
|
|
|
|
elif isinstance(input_data, (list, tuple)):
|
|
|
|
logger.info("[DETECT_RAW] Converting list/tuple to dictionary for inference")
|
|
|
|
for idx, layer_info in enumerate(self.input_vstream_info):
|
|
|
|
input_dict[layer_info.name] = input_data[idx]
|
|
|
|
logger.info(f"[DETECT_RAW] Assigned data to input layer '{layer_info.name}'")
|
|
|
|
else:
|
|
|
|
if len(input_data.shape) == 3:
|
|
|
|
logger.info(f"[DETECT_RAW] Adding batch dimension to input with shape {input_data.shape}")
|
|
|
|
input_data = np.expand_dims(input_data, axis=0)
|
|
|
|
logger.info(f"[DETECT_RAW] New input shape after adding batch dimension: {input_data.shape}")
|
|
|
|
input_dict[self.input_vstream_info[0].name] = input_data
|
|
|
|
logger.info(f"[DETECT_RAW] Assigned data to input layer '{self.input_vstream_info[0].name}'")
|
|
|
|
|
|
|
|
logger.info(f"[DETECT_RAW] Final input dictionary keys: {list(input_dict.keys())}")
|
|
|
|
|
|
|
|
# Log details about each input layer
|
|
|
|
for key, value in input_dict.items():
|
|
|
|
if isinstance(value, np.ndarray):
|
|
|
|
logger.info(f"[DETECT_RAW] Layer '{key}' has shape: {value.shape}, dtype: {value.dtype}")
|
|
|
|
|
|
|
|
logger.info("[DETECT_RAW] Activating network group")
|
|
|
|
with self.network_group.activate(self.network_group_params):
|
|
|
|
logger.info("[DETECT_RAW] Running inference")
|
|
|
|
raw_output = infer_pipeline.infer(input_dict)
|
|
|
|
|
|
|
|
logger.info(f"[DETECT_RAW] Inference complete, output keys: {list(raw_output.keys())}")
|
|
|
|
|
|
|
|
# Log details about output structure for debugging
|
|
|
|
for key, value in raw_output.items():
|
|
|
|
logger.info(f"[DETECT_RAW] Output layer '{key}' details:")
|
|
|
|
debug_output_structure(value, prefix=" ")
|
|
|
|
|
|
|
|
# Process outputs based on model type
|
|
|
|
if self.h8l_model_type in [ModelTypeEnum.hailoyolo, ModelTypeEnum.yolov9, ModelTypeEnum.yolox, ModelTypeEnum.yolonas]:
|
|
|
|
logger.info(f"[DETECT_RAW] Processing YOLO-type output for model type: {self.h8l_model_type}")
|
|
|
|
detections = self.process_yolo_output(raw_output)
|
|
|
|
else:
|
|
|
|
# Default to SSD processing
|
|
|
|
logger.info(f"[DETECT_RAW] Processing SSD output for model type: {self.h8l_model_type}")
|
|
|
|
expected_output_name = self.output_vstream_info[0].name
|
|
|
|
if expected_output_name not in raw_output:
|
|
|
|
error_msg = f"[DETECT_RAW] Missing output stream {expected_output_name} in inference results"
|
|
|
|
logger.error(error_msg)
|
|
|
|
return np.zeros((20, 6), np.float32)
|
|
|
|
detections = self.process_ssd_output(raw_output[expected_output_name])
|
|
|
|
|
|
|
|
logger.info(f"[DETECT_RAW] Processed detections shape: {detections.shape}")
|
|
|
|
return detections
|
|
|
|
|
|
|
|
except HailoRTException as e:
|
|
|
|
logger.error(f"[DETECT_RAW] HailoRTException during inference: {e}")
|
|
|
|
return np.zeros((20, 6), np.float32)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"[DETECT_RAW] Exception during inference: {e}")
|
|
|
|
return np.zeros((20, 6), np.float32)
|
|
|
|
finally:
|
|
|
|
logger.debug("[DETECT_RAW] Exiting function")
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
def process_yolo_output(self, raw_output):
|
|
|
|
"""
|
|
|
|
Process YOLO outputs to match the expected Frigate detection format.
|
|
|
|
Returns detections in the format [class_id, score, ymin, xmin, ymax, xmax]
|
|
|
|
"""
|
|
|
|
logger.info("[PROCESS_YOLO] Processing YOLO output")
|
|
|
|
|
|
|
|
# Initialize empty array for our results - match TFLite format
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
2025-02-19 16:21:33 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
try:
|
|
|
|
# Identify output layers for boxes, classes, and scores
|
|
|
|
boxes_layer = None
|
|
|
|
classes_layer = None
|
|
|
|
scores_layer = None
|
|
|
|
count_layer = None
|
|
|
|
|
|
|
|
# Try to identify layers by name pattern
|
|
|
|
for key in raw_output.keys():
|
|
|
|
key_lower = key.lower()
|
|
|
|
if any(box_term in key_lower for box_term in ['box', 'bbox', 'location']):
|
|
|
|
boxes_layer = key
|
|
|
|
elif any(class_term in key_lower for class_term in ['class', 'category', 'label']):
|
|
|
|
classes_layer = key
|
|
|
|
elif any(score_term in key_lower for score_term in ['score', 'confidence', 'prob']):
|
|
|
|
scores_layer = key
|
|
|
|
elif any(count_term in key_lower for count_term in ['count', 'num', 'detection_count']):
|
|
|
|
count_layer = key
|
|
|
|
|
|
|
|
logger.info(f"[PROCESS_YOLO] Identified layers - Boxes: {boxes_layer}, Classes: {classes_layer}, "
|
|
|
|
f"Scores: {scores_layer}, Count: {count_layer}")
|
|
|
|
|
|
|
|
# If we found all necessary layers
|
|
|
|
if boxes_layer and classes_layer and scores_layer:
|
|
|
|
# Extract data from the identified layers
|
|
|
|
boxes = raw_output[boxes_layer]
|
|
|
|
class_ids = raw_output[classes_layer]
|
|
|
|
scores = raw_output[scores_layer]
|
|
|
|
|
|
|
|
# If these are lists, extract the first element (batch)
|
|
|
|
if isinstance(boxes, list) and len(boxes) > 0:
|
|
|
|
boxes = boxes[0]
|
|
|
|
if isinstance(class_ids, list) and len(class_ids) > 0:
|
|
|
|
class_ids = class_ids[0]
|
|
|
|
if isinstance(scores, list) and len(scores) > 0:
|
|
|
|
scores = scores[0]
|
|
|
|
|
|
|
|
# Get detection count (if available)
|
|
|
|
count = 0
|
|
|
|
if count_layer:
|
|
|
|
count_val = raw_output[count_layer]
|
|
|
|
if isinstance(count_val, list) and len(count_val) > 0:
|
|
|
|
count_val = count_val[0]
|
|
|
|
count = int(count_val[0] if isinstance(count_val, np.ndarray) else count_val)
|
|
|
|
else:
|
|
|
|
# Use the length of scores as count
|
|
|
|
count = len(scores) if hasattr(scores, '__len__') else 0
|
|
|
|
|
|
|
|
# Process detections like in the example
|
|
|
|
for i in range(count):
|
|
|
|
if i >= 20: # Limit to 20 detections
|
|
|
|
break
|
|
|
|
|
|
|
|
if scores[i] < 0.4: # Use 0.4 threshold as in the example
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Add detection in the format [class_id, score, ymin, xmin, ymax, xmax]
|
|
|
|
detections[i] = [
|
|
|
|
float(class_ids[i]),
|
|
|
|
float(scores[i]),
|
|
|
|
float(boxes[i][0]), # ymin
|
|
|
|
float(boxes[i][1]), # xmin
|
|
|
|
float(boxes[i][2]), # ymax
|
|
|
|
float(boxes[i][3]), # xmax
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
# Fallback: Try to process output as a combined detection array
|
|
|
|
logger.info("[PROCESS_YOLO] Couldn't identify separate output layers, trying unified format")
|
|
|
|
|
|
|
|
# Look for a detection array in the output
|
|
|
|
detection_layer = None
|
|
|
|
for key, value in raw_output.items():
|
|
|
|
if isinstance(value, list) and len(value) > 0:
|
|
|
|
if isinstance(value[0], np.ndarray) and value[0].ndim >= 2:
|
|
|
|
detection_layer = key
|
|
|
|
break
|
|
|
|
|
|
|
|
if detection_layer:
|
|
|
|
# Get the detection array
|
|
|
|
detection_array = raw_output[detection_layer]
|
|
|
|
if isinstance(detection_array, list):
|
|
|
|
detection_array = detection_array[0] # First batch
|
|
|
|
|
|
|
|
# Process each detection
|
|
|
|
detection_count = 0
|
|
|
|
for i, detection in enumerate(detection_array):
|
|
|
|
if detection_count >= 20:
|
|
|
|
break
|
|
|
|
|
|
|
|
# Format depends on YOLO variant but typically includes:
|
|
|
|
# class_id, score, box coordinates (could be [x,y,w,h] or [xmin,ymin,xmax,ymax])
|
|
|
|
|
|
|
|
# Extract elements based on shape
|
|
|
|
if len(detection) >= 6: # Likely [class_id, score, xmin, ymin, xmax, ymax]
|
|
|
|
class_id = detection[0]
|
|
|
|
score = detection[1]
|
|
|
|
|
|
|
|
# Check if this is actually [x, y, w, h, conf, class_id]
|
|
|
|
if score > 1.0: # Score shouldn't be > 1, might be a coordinate
|
|
|
|
# Reorganize assuming [x, y, w, h, conf, class_id] format
|
|
|
|
x, y, w, h, confidence, *class_probs = detection
|
|
|
|
|
|
|
|
# Get class with highest probability
|
|
|
|
if len(class_probs) > 1:
|
|
|
|
class_id = np.argmax(class_probs)
|
|
|
|
score = confidence * class_probs[class_id]
|
|
|
|
else:
|
|
|
|
class_id = class_probs[0]
|
|
|
|
score = confidence
|
|
|
|
|
|
|
|
# Convert [x,y,w,h] to [ymin,xmin,ymax,xmax]
|
|
|
|
xmin = x - w/2
|
|
|
|
ymin = y - h/2
|
|
|
|
xmax = x + w/2
|
|
|
|
ymax = y + h/2
|
|
|
|
else:
|
|
|
|
# Use as is, but verify we have box coordinates
|
|
|
|
xmin, ymin, xmax, ymax = detection[2:6]
|
|
|
|
elif len(detection) >= 4: # Might be [class_id, score, xmin, ymin]
|
|
|
|
class_id = detection[0]
|
|
|
|
score = detection[1]
|
|
|
|
# For incomplete boxes, assume zeros
|
|
|
|
xmin, ymin = detection[2:4]
|
|
|
|
xmax = xmin + 0.1 # Small default size
|
|
|
|
ymax = ymin + 0.1
|
|
|
|
else:
|
|
|
|
# Skip invalid detections
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Skip low confidence detections
|
|
|
|
if score < 0.4:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Add to detection array
|
|
|
|
detections[detection_count] = [
|
|
|
|
float(class_id),
|
|
|
|
float(score),
|
|
|
|
float(ymin),
|
|
|
|
float(xmin),
|
|
|
|
float(ymax),
|
|
|
|
float(xmax)
|
|
|
|
]
|
|
|
|
detection_count += 1
|
|
|
|
|
|
|
|
logger.info(f"[PROCESS_YOLO] Processed {np.count_nonzero(detections[:, 1] > 0)} valid detections")
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"[PROCESS_YOLO] Error processing YOLO output: {e}")
|
|
|
|
# detections already initialized as zeros
|
|
|
|
|
|
|
|
return detections
|
2024-07-14 19:17:02 +02:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
def process_ssd_output(self, raw_output):
|
2025-01-19 15:16:43 +01:00
|
|
|
"""
|
2025-02-26 13:04:27 +01:00
|
|
|
Process SSD MobileNet v1 output with special handling for jagged arrays
|
2025-01-19 15:16:43 +01:00
|
|
|
"""
|
2025-02-26 13:04:27 +01:00
|
|
|
logger.info("[PROCESS_SSD] Processing SSD output")
|
|
|
|
|
|
|
|
# Initialize empty lists for our results
|
|
|
|
all_detections = []
|
|
|
|
|
2024-07-14 19:17:02 +02:00
|
|
|
try:
|
2025-02-26 13:04:27 +01:00
|
|
|
if isinstance(raw_output, list) and len(raw_output) > 0:
|
|
|
|
# Handle first level of nesting
|
|
|
|
raw_detections = raw_output[0]
|
|
|
|
logger.debug(f"[PROCESS_SSD] First level output type: {type(raw_detections)}")
|
2025-01-19 15:16:43 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Process all valid detections
|
|
|
|
for i, detection_group in enumerate(raw_detections):
|
|
|
|
# Skip empty arrays or invalid data
|
|
|
|
if not isinstance(detection_group, np.ndarray):
|
|
|
|
continue
|
2025-01-19 15:16:43 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Skip empty arrays
|
|
|
|
if detection_group.size == 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# For the arrays with actual detections
|
|
|
|
if detection_group.shape[0] > 0:
|
|
|
|
# Extract the detection data - typical format is (ymin, xmin, ymax, xmax, score)
|
|
|
|
for j in range(detection_group.shape[0]):
|
|
|
|
detection = detection_group[j]
|
2025-01-19 15:16:43 +01:00
|
|
|
|
2025-02-26 13:04:27 +01:00
|
|
|
# Check if we have 5 values (expected format)
|
|
|
|
if len(detection) == 5:
|
|
|
|
ymin, xmin, ymax, xmax, score = detection
|
|
|
|
class_id = i # Use index as class ID
|
|
|
|
|
|
|
|
# Add detection if score is reasonable
|
|
|
|
if 0 <= score <= 1.0 and score > 0.1: # Basic threshold
|
|
|
|
all_detections.append([float(class_id), float(score),
|
|
|
|
float(ymin), float(xmin),
|
|
|
|
float(ymax), float(xmax)])
|
|
|
|
|
|
|
|
# Convert to numpy array if we have valid detections
|
|
|
|
if all_detections:
|
|
|
|
detections_array = np.array(all_detections, dtype=np.float32)
|
|
|
|
|
|
|
|
# Sort by score (descending)
|
|
|
|
sorted_idx = np.argsort(detections_array[:, 1])[::-1]
|
|
|
|
detections_array = detections_array[sorted_idx]
|
|
|
|
|
|
|
|
# Take top 20 (or fewer if less available)
|
|
|
|
detections_array = detections_array[:20]
|
|
|
|
else:
|
|
|
|
detections_array = np.zeros((0, 6), dtype=np.float32)
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"[PROCESS_SSD] Error processing SSD output: {e}")
|
|
|
|
detections_array = np.zeros((0, 6), dtype=np.float32)
|
|
|
|
|
|
|
|
# Pad to 20 detections if needed
|
|
|
|
if len(detections_array) < 20:
|
|
|
|
padding = np.zeros((20 - len(detections_array), 6), dtype=np.float32)
|
|
|
|
detections_array = np.vstack((detections_array, padding))
|
|
|
|
|
|
|
|
logger.info(f"[PROCESS_SSD] Final output shape: {detections_array.shape}")
|
|
|
|
return detections_array
|
|
|
|
|
|
|
|
def process_detections(self, raw_detections, threshold=0.5):
|
|
|
|
"""
|
|
|
|
Legacy detection processing method, kept for compatibility.
|
|
|
|
Now redirects to the more robust process_ssd_output method.
|
|
|
|
"""
|
|
|
|
logger.info("[PROCESS] Starting to process detections")
|
|
|
|
logger.info(f"[PROCESS] Using threshold: {threshold}")
|
|
|
|
|
|
|
|
# Wrap the raw_detections in a list to match expected format for process_ssd_output
|
|
|
|
if not isinstance(raw_detections, list):
|
|
|
|
raw_detections = [raw_detections]
|
|
|
|
|
|
|
|
# Process using the more robust method
|
|
|
|
return self.process_ssd_output(raw_detections)
|
|
|
|
|
|
|
|
def close(self):
|
|
|
|
logger.info("[CLOSE] Closing Hailo device")
|
|
|
|
try:
|
|
|
|
self.target.close()
|
|
|
|
logger.info("Hailo device closed successfully")
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Failed to close Hailo device: {e}")
|
|
|
|
raise
|