blakeblackshear.frigate/frigate/detectors/plugins/hailo8l.py

561 lines
26 KiB
Python
Raw Normal View History

Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
import logging
import os
2025-01-19 15:16:43 +01:00
import subprocess
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
import urllib.request
2025-02-26 13:04:27 +01:00
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
import numpy as np
2025-02-26 13:04:27 +01:00
try:
from hailo_platform import (
HEF,
ConfigureParams,
FormatType,
HailoRTException,
HailoStreamInterface,
InferVStreams,
InputVStreamParams,
OutputVStreamParams,
VDevice,
)
except ModuleNotFoundError:
pass
2025-01-19 15:16:43 +01:00
from pydantic import BaseModel, Field
from typing_extensions import Literal
2025-02-26 13:04:27 +01:00
from typing import Dict, Optional, List
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum, InputTensorEnum, PixelFormatEnum, InputDTypeEnum
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
# Setup logging
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
logger = logging.getLogger(__name__)
2025-02-26 13:04:27 +01:00
logger.setLevel(logging.DEBUG)
file_handler = logging.FileHandler('hailo_detector_debug.log')
file_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
# Define the detector key for Hailo
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
DETECTOR_KEY = "hailo8l"
2025-02-26 13:04:27 +01:00
ARCH = None
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
def detect_hailo_arch():
try:
# Run the hailortcli command to get device information
result = subprocess.run(['hailortcli', 'fw-control', 'identify'], capture_output=True, text=True)
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
# Check if the command was successful
if result.returncode != 0:
print(f"Error running hailortcli: {result.stderr}")
return None
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
# Search for the "Device Architecture" line in the output
for line in result.stdout.split('\n'):
if "Device Architecture" in line:
if "HAILO8L" in line:
return "hailo8l"
elif "HAILO8" in line:
return "hailo8"
2025-01-09 13:26:56 +01:00
2025-02-26 13:04:27 +01:00
print("Could not determine Hailo architecture from device information.")
return None
except Exception as e:
print(f"An error occurred while detecting Hailo architecture: {e}")
return None
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
# Configuration class for Hailo detector
class HailoDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY] # Type of the detector
device: str = Field(default="PCIe", title="Device Type") # Device type (e.g., PCIe)
url: Optional[str] = Field(default=None, title="Custom Model URL")
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
# Hailo detector class implementation
class HailoDetector(DetectionApi):
type_key = DETECTOR_KEY # Set the type key to the Hailo detector key
2025-02-19 16:21:33 +01:00
def __init__(self, detector_config: HailoDetectorConfig):
2025-02-26 13:04:27 +01:00
print(f"[INIT] Starting HailoDetector initialization with config: {detector_config}")
logger.info(f"[INIT] Starting HailoDetector initialization with config: {detector_config}")
# Set global ARCH variable
global ARCH
ARCH = detect_hailo_arch()
logger.info(f"[INIT] Detected Hailo architecture: {ARCH}")
supported_models = [
ModelTypeEnum.ssd,
ModelTypeEnum.yolov9,
ModelTypeEnum.hailoyolo,
]
# Initialize device type and model path from the configuration
self.h8l_device_type = detector_config.device
self.h8l_model_path = detector_config.model.path
self.h8l_model_type = detector_config.model.model_type
# Set configuration based on model type
self.set_correct_config(self.h8l_model_type)
# Override with custom URL if provided
if hasattr(detector_config, "url") and detector_config.url:
self.model_url = detector_config.url
self.expected_model_filename = self.model_url.split('/')[-1]
self.check_and_prepare_model()
try:
# Validate device type
if self.h8l_device_type not in ["PCIe", "M.2"]:
raise ValueError(f"Unsupported device type: {self.h8l_device_type}")
# Initialize the Hailo device
logger.info("[INIT] Creating VDevice instance")
self.target = VDevice()
# Load the HEF (Hailo's binary format for neural networks)
logger.info(f"[INIT] Loading HEF from {self.h8l_model_path}")
self.hef = HEF(self.h8l_model_path)
# Create configuration parameters from the HEF
logger.info("[INIT] Creating configuration parameters")
self.configure_params = ConfigureParams.create_from_hef(
hef=self.hef, interface=HailoStreamInterface.PCIe
)
# Configure the device with the HEF
logger.info("[INIT] Configuring device with HEF")
self.network_groups = self.target.configure(self.hef, self.configure_params)
self.network_group = self.network_groups[0]
self.network_group_params = self.network_group.create_params()
# Create input and output virtual stream parameters
logger.info("[INIT] Creating input/output stream parameters")
self.input_vstream_params = InputVStreamParams.make(
self.network_group,
format_type=self.hef.get_input_vstream_infos()[0].format.type,
)
self.output_vstream_params = OutputVStreamParams.make(
self.network_group, format_type=getattr(FormatType, self.output_type)
)
# Get input and output stream information from the HEF
self.input_vstream_info = self.hef.get_input_vstream_infos()
self.output_vstream_info = self.hef.get_output_vstream_infos()
for i, info in enumerate(self.input_vstream_info):
logger.info(f"[INIT] Input Stream {i}: Name={info.name}, Format={info.format}, Shape={info.shape}")
for i, info in enumerate(self.output_vstream_info):
logger.info(f"[INIT] Output Stream {i}: Name={info.name}, Format={info.format}, Shape={info.shape}")
logger.info("Hailo device initialized successfully")
except HailoRTException as e:
logger.error(f"HailoRTException during initialization: {e}")
raise
except Exception as e:
logger.error(f"Failed to initialize Hailo device: {e}")
raise
def set_correct_config(self, modelname):
if modelname == ModelTypeEnum.ssd:
self.h8l_model_height = 300
self.h8l_model_width = 300
self.h8l_tensor_format = InputTensorEnum.nhwc
self.h8l_pixel_format = PixelFormatEnum.rgb
self.h8l_input_dtype = InputDTypeEnum.float
self.cache_dir = "/config/model_cache/h8l_cache"
self.expected_model_filename = "ssd_mobilenet_v1.hef"
self.output_type = "FLOAT32"
if ARCH == "hailo8":
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/ssd_mobilenet_v1.hef"
else:
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/ssd_mobilenet_v1.hef"
else:
self.h8l_model_height = 640
self.h8l_model_width = 640
self.h8l_tensor_format = InputTensorEnum.nhwc
self.h8l_pixel_format = PixelFormatEnum.rgb # Default to RGB
self.h8l_input_dtype = InputDTypeEnum.int
self.cache_dir = "/config/model_cache/h8l_cache"
self.output_type = "FLOAT32"
if ARCH == "hailo8":
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/yolov8m.hef"
self.expected_model_filename = "yolov8m.hef"
else:
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/yolov8s.hef"
self.expected_model_filename = "yolov8s.hef"
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
def check_and_prepare_model(self):
logger.info(f"[CHECK_MODEL] Checking for model at {self.cache_dir}/{self.expected_model_filename}")
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
# Ensure cache directory exists
if not os.path.exists(self.cache_dir):
logger.info(f"[CHECK_MODEL] Creating cache directory: {self.cache_dir}")
os.makedirs(self.cache_dir)
# Check for the expected model file
model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
if not os.path.isfile(model_file_path):
logger.info(f"[CHECK_MODEL] Model not found at {model_file_path}, downloading from {self.model_url}")
urllib.request.urlretrieve(self.model_url, model_file_path)
logger.info(f"[CHECK_MODEL] Model downloaded to {model_file_path}")
else:
logger.info(f"[CHECK_MODEL] Model already exists at {model_file_path}")
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
self.h8l_model_path = model_file_path
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
def detect_raw(self, tensor_input):
logger.info("[DETECT_RAW] Starting detection")
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
if tensor_input is None:
error_msg = "[DETECT_RAW] The 'tensor_input' argument must be provided"
logger.error(error_msg)
raise ValueError(error_msg)
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
# Log input tensor information
logger.info(f"[DETECT_RAW] Input tensor type: {type(tensor_input)}")
if isinstance(tensor_input, np.ndarray):
logger.info(f"[DETECT_RAW] Input tensor shape: {tensor_input.shape}")
logger.info(f"[DETECT_RAW] Input tensor dtype: {tensor_input.dtype}")
logger.info(f"[DETECT_RAW] Input tensor min value: {np.min(tensor_input)}")
logger.info(f"[DETECT_RAW] Input tensor max value: {np.max(tensor_input)}")
logger.info(f"[DETECT_RAW] Input tensor mean value: {np.mean(tensor_input)}")
# Print sample of the tensor (first few elements)
flat_sample = tensor_input.flatten()[:10]
logger.info(f"[DETECT_RAW] Input tensor sample: {flat_sample}")
elif isinstance(tensor_input, list):
logger.info(f"[DETECT_RAW] Input is a list with length: {len(tensor_input)}")
tensor_input = np.array(tensor_input)
logger.info(f"[DETECT_RAW] Converted to array with shape: {tensor_input.shape}, dtype: {tensor_input.dtype}")
elif isinstance(tensor_input, dict):
logger.info(f"[DETECT_RAW] Input is a dictionary with keys: {tensor_input.keys()}")
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
input_data = tensor_input
logger.debug("[DETECT_RAW] Input data prepared for inference")
try:
logger.info("[DETECT_RAW] Creating inference pipeline")
with InferVStreams(
self.network_group,
self.input_vstream_params,
self.output_vstream_params,
) as infer_pipeline:
input_dict = {}
if isinstance(input_data, dict):
logger.info("[DETECT_RAW] Input is already a dictionary, using as-is")
input_dict = input_data
elif isinstance(input_data, (list, tuple)):
logger.info("[DETECT_RAW] Converting list/tuple to dictionary for inference")
for idx, layer_info in enumerate(self.input_vstream_info):
input_dict[layer_info.name] = input_data[idx]
logger.info(f"[DETECT_RAW] Assigned data to input layer '{layer_info.name}'")
else:
if len(input_data.shape) == 3:
logger.info(f"[DETECT_RAW] Adding batch dimension to input with shape {input_data.shape}")
input_data = np.expand_dims(input_data, axis=0)
logger.info(f"[DETECT_RAW] New input shape after adding batch dimension: {input_data.shape}")
input_dict[self.input_vstream_info[0].name] = input_data
logger.info(f"[DETECT_RAW] Assigned data to input layer '{self.input_vstream_info[0].name}'")
logger.info(f"[DETECT_RAW] Final input dictionary keys: {list(input_dict.keys())}")
# Log details about each input layer
for key, value in input_dict.items():
if isinstance(value, np.ndarray):
logger.info(f"[DETECT_RAW] Layer '{key}' has shape: {value.shape}, dtype: {value.dtype}")
logger.info("[DETECT_RAW] Activating network group")
with self.network_group.activate(self.network_group_params):
logger.info("[DETECT_RAW] Running inference")
raw_output = infer_pipeline.infer(input_dict)
logger.info(f"[DETECT_RAW] Inference complete, output keys: {list(raw_output.keys())}")
# Log details about output structure for debugging
for key, value in raw_output.items():
logger.info(f"[DETECT_RAW] Output layer '{key}' details:")
debug_output_structure(value, prefix=" ")
# Process outputs based on model type
if self.h8l_model_type in [ModelTypeEnum.hailoyolo, ModelTypeEnum.yolov9, ModelTypeEnum.yolox, ModelTypeEnum.yolonas]:
logger.info(f"[DETECT_RAW] Processing YOLO-type output for model type: {self.h8l_model_type}")
detections = self.process_yolo_output(raw_output)
else:
# Default to SSD processing
logger.info(f"[DETECT_RAW] Processing SSD output for model type: {self.h8l_model_type}")
expected_output_name = self.output_vstream_info[0].name
if expected_output_name not in raw_output:
error_msg = f"[DETECT_RAW] Missing output stream {expected_output_name} in inference results"
logger.error(error_msg)
return np.zeros((20, 6), np.float32)
detections = self.process_ssd_output(raw_output[expected_output_name])
logger.info(f"[DETECT_RAW] Processed detections shape: {detections.shape}")
return detections
except HailoRTException as e:
logger.error(f"[DETECT_RAW] HailoRTException during inference: {e}")
return np.zeros((20, 6), np.float32)
except Exception as e:
logger.error(f"[DETECT_RAW] Exception during inference: {e}")
return np.zeros((20, 6), np.float32)
finally:
logger.debug("[DETECT_RAW] Exiting function")
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
def process_yolo_output(self, raw_output):
"""
Process YOLO outputs to match the expected Frigate detection format.
Returns detections in the format [class_id, score, ymin, xmin, ymax, xmax]
"""
logger.info("[PROCESS_YOLO] Processing YOLO output")
# Initialize empty array for our results - match TFLite format
detections = np.zeros((20, 6), np.float32)
2025-02-19 16:21:33 +01:00
2025-02-26 13:04:27 +01:00
try:
# Identify output layers for boxes, classes, and scores
boxes_layer = None
classes_layer = None
scores_layer = None
count_layer = None
# Try to identify layers by name pattern
for key in raw_output.keys():
key_lower = key.lower()
if any(box_term in key_lower for box_term in ['box', 'bbox', 'location']):
boxes_layer = key
elif any(class_term in key_lower for class_term in ['class', 'category', 'label']):
classes_layer = key
elif any(score_term in key_lower for score_term in ['score', 'confidence', 'prob']):
scores_layer = key
elif any(count_term in key_lower for count_term in ['count', 'num', 'detection_count']):
count_layer = key
logger.info(f"[PROCESS_YOLO] Identified layers - Boxes: {boxes_layer}, Classes: {classes_layer}, "
f"Scores: {scores_layer}, Count: {count_layer}")
# If we found all necessary layers
if boxes_layer and classes_layer and scores_layer:
# Extract data from the identified layers
boxes = raw_output[boxes_layer]
class_ids = raw_output[classes_layer]
scores = raw_output[scores_layer]
# If these are lists, extract the first element (batch)
if isinstance(boxes, list) and len(boxes) > 0:
boxes = boxes[0]
if isinstance(class_ids, list) and len(class_ids) > 0:
class_ids = class_ids[0]
if isinstance(scores, list) and len(scores) > 0:
scores = scores[0]
# Get detection count (if available)
count = 0
if count_layer:
count_val = raw_output[count_layer]
if isinstance(count_val, list) and len(count_val) > 0:
count_val = count_val[0]
count = int(count_val[0] if isinstance(count_val, np.ndarray) else count_val)
else:
# Use the length of scores as count
count = len(scores) if hasattr(scores, '__len__') else 0
# Process detections like in the example
for i in range(count):
if i >= 20: # Limit to 20 detections
break
if scores[i] < 0.4: # Use 0.4 threshold as in the example
continue
# Add detection in the format [class_id, score, ymin, xmin, ymax, xmax]
detections[i] = [
float(class_ids[i]),
float(scores[i]),
float(boxes[i][0]), # ymin
float(boxes[i][1]), # xmin
float(boxes[i][2]), # ymax
float(boxes[i][3]), # xmax
]
else:
# Fallback: Try to process output as a combined detection array
logger.info("[PROCESS_YOLO] Couldn't identify separate output layers, trying unified format")
# Look for a detection array in the output
detection_layer = None
for key, value in raw_output.items():
if isinstance(value, list) and len(value) > 0:
if isinstance(value[0], np.ndarray) and value[0].ndim >= 2:
detection_layer = key
break
if detection_layer:
# Get the detection array
detection_array = raw_output[detection_layer]
if isinstance(detection_array, list):
detection_array = detection_array[0] # First batch
# Process each detection
detection_count = 0
for i, detection in enumerate(detection_array):
if detection_count >= 20:
break
# Format depends on YOLO variant but typically includes:
# class_id, score, box coordinates (could be [x,y,w,h] or [xmin,ymin,xmax,ymax])
# Extract elements based on shape
if len(detection) >= 6: # Likely [class_id, score, xmin, ymin, xmax, ymax]
class_id = detection[0]
score = detection[1]
# Check if this is actually [x, y, w, h, conf, class_id]
if score > 1.0: # Score shouldn't be > 1, might be a coordinate
# Reorganize assuming [x, y, w, h, conf, class_id] format
x, y, w, h, confidence, *class_probs = detection
# Get class with highest probability
if len(class_probs) > 1:
class_id = np.argmax(class_probs)
score = confidence * class_probs[class_id]
else:
class_id = class_probs[0]
score = confidence
# Convert [x,y,w,h] to [ymin,xmin,ymax,xmax]
xmin = x - w/2
ymin = y - h/2
xmax = x + w/2
ymax = y + h/2
else:
# Use as is, but verify we have box coordinates
xmin, ymin, xmax, ymax = detection[2:6]
elif len(detection) >= 4: # Might be [class_id, score, xmin, ymin]
class_id = detection[0]
score = detection[1]
# For incomplete boxes, assume zeros
xmin, ymin = detection[2:4]
xmax = xmin + 0.1 # Small default size
ymax = ymin + 0.1
else:
# Skip invalid detections
continue
# Skip low confidence detections
if score < 0.4:
continue
# Add to detection array
detections[detection_count] = [
float(class_id),
float(score),
float(ymin),
float(xmin),
float(ymax),
float(xmax)
]
detection_count += 1
logger.info(f"[PROCESS_YOLO] Processed {np.count_nonzero(detections[:, 1] > 0)} valid detections")
except Exception as e:
logger.error(f"[PROCESS_YOLO] Error processing YOLO output: {e}")
# detections already initialized as zeros
return detections
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
2025-02-26 13:04:27 +01:00
def process_ssd_output(self, raw_output):
2025-01-19 15:16:43 +01:00
"""
2025-02-26 13:04:27 +01:00
Process SSD MobileNet v1 output with special handling for jagged arrays
2025-01-19 15:16:43 +01:00
"""
2025-02-26 13:04:27 +01:00
logger.info("[PROCESS_SSD] Processing SSD output")
# Initialize empty lists for our results
all_detections = []
Initial support for Hailo-8L (#12431) * Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-07-14 19:17:02 +02:00
try:
2025-02-26 13:04:27 +01:00
if isinstance(raw_output, list) and len(raw_output) > 0:
# Handle first level of nesting
raw_detections = raw_output[0]
logger.debug(f"[PROCESS_SSD] First level output type: {type(raw_detections)}")
2025-01-19 15:16:43 +01:00
2025-02-26 13:04:27 +01:00
# Process all valid detections
for i, detection_group in enumerate(raw_detections):
# Skip empty arrays or invalid data
if not isinstance(detection_group, np.ndarray):
continue
2025-01-19 15:16:43 +01:00
2025-02-26 13:04:27 +01:00
# Skip empty arrays
if detection_group.size == 0:
continue
# For the arrays with actual detections
if detection_group.shape[0] > 0:
# Extract the detection data - typical format is (ymin, xmin, ymax, xmax, score)
for j in range(detection_group.shape[0]):
detection = detection_group[j]
2025-01-19 15:16:43 +01:00
2025-02-26 13:04:27 +01:00
# Check if we have 5 values (expected format)
if len(detection) == 5:
ymin, xmin, ymax, xmax, score = detection
class_id = i # Use index as class ID
# Add detection if score is reasonable
if 0 <= score <= 1.0 and score > 0.1: # Basic threshold
all_detections.append([float(class_id), float(score),
float(ymin), float(xmin),
float(ymax), float(xmax)])
# Convert to numpy array if we have valid detections
if all_detections:
detections_array = np.array(all_detections, dtype=np.float32)
# Sort by score (descending)
sorted_idx = np.argsort(detections_array[:, 1])[::-1]
detections_array = detections_array[sorted_idx]
# Take top 20 (or fewer if less available)
detections_array = detections_array[:20]
else:
detections_array = np.zeros((0, 6), dtype=np.float32)
except Exception as e:
logger.error(f"[PROCESS_SSD] Error processing SSD output: {e}")
detections_array = np.zeros((0, 6), dtype=np.float32)
# Pad to 20 detections if needed
if len(detections_array) < 20:
padding = np.zeros((20 - len(detections_array), 6), dtype=np.float32)
detections_array = np.vstack((detections_array, padding))
logger.info(f"[PROCESS_SSD] Final output shape: {detections_array.shape}")
return detections_array
def process_detections(self, raw_detections, threshold=0.5):
"""
Legacy detection processing method, kept for compatibility.
Now redirects to the more robust process_ssd_output method.
"""
logger.info("[PROCESS] Starting to process detections")
logger.info(f"[PROCESS] Using threshold: {threshold}")
# Wrap the raw_detections in a list to match expected format for process_ssd_output
if not isinstance(raw_detections, list):
raw_detections = [raw_detections]
# Process using the more robust method
return self.process_ssd_output(raw_detections)
def close(self):
logger.info("[CLOSE] Closing Hailo device")
try:
self.target.close()
logger.info("Hailo device closed successfully")
except Exception as e:
logger.error(f"Failed to close Hailo device: {e}")
raise