mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
WIP: convert to camera class
This commit is contained in:
parent
8774e537dc
commit
0279121d77
@ -20,23 +20,16 @@ from frigate.util import tonumpyarray
|
||||
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
||||
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
|
||||
from frigate.motion import detect_motion
|
||||
from frigate.video import fetch_frames, FrameTracker
|
||||
from frigate.video import fetch_frames, FrameTracker, Camera
|
||||
from frigate.object_detection import FramePrepper, PreppedQueueProcessor
|
||||
|
||||
with open('/config/config.yml') as f:
|
||||
# use safe_load instead load
|
||||
CONFIG = yaml.safe_load(f)
|
||||
|
||||
rtsp_camera = CONFIG['cameras']['back']['rtsp']
|
||||
if (rtsp_camera['password'].startswith('$')):
|
||||
rtsp_camera['password'] = os.getenv(rtsp_camera['password'][1:])
|
||||
RTSP_URL = 'rtsp://{}:{}@{}:{}{}'.format(rtsp_camera['user'],
|
||||
rtsp_camera['password'], rtsp_camera['host'], rtsp_camera['port'],
|
||||
rtsp_camera['path'])
|
||||
|
||||
MQTT_HOST = CONFIG['mqtt']['host']
|
||||
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
||||
MQTT_TOPIC_PREFIX = CONFIG['mqtt']['topic_prefix'] + '/back'
|
||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||
|
||||
@ -44,80 +37,6 @@ WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
def main():
|
||||
DETECTED_OBJECTS = []
|
||||
recent_frames = {}
|
||||
# Parse selected regions
|
||||
regions = CONFIG['cameras']['back']['regions']
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(RTSP_URL)
|
||||
ret, frame = video.read()
|
||||
if ret:
|
||||
frame_shape = frame.shape
|
||||
else:
|
||||
print("Unable to capture video stream")
|
||||
exit(1)
|
||||
video.release()
|
||||
|
||||
# compute the flattened array length from the array shape
|
||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
# create shared array for storing the full frame image data
|
||||
shared_arr = mp.Array(ctypes.c_uint8, flat_array_length)
|
||||
# create shared value for storing the frame_time
|
||||
shared_frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
objects_parsed = mp.Condition()
|
||||
# Queue for detected objects
|
||||
object_queue = queue.Queue()
|
||||
# Queue for prepped frames
|
||||
prepped_frame_queue = queue.Queue(len(regions)*2)
|
||||
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
# start the process to capture frames from the RTSP stream and store in a shared array
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
||||
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
|
||||
capture_process.daemon = True
|
||||
|
||||
# for each region, start a separate thread to resize the region and prep for detection
|
||||
detection_prep_threads = []
|
||||
for region in regions:
|
||||
detection_prep_threads.append(FramePrepper(
|
||||
frame_arr,
|
||||
shared_frame_time,
|
||||
frame_ready,
|
||||
frame_lock,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
prepped_frame_queue,
|
||||
object_queue
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
|
||||
recent_frames)
|
||||
frame_tracker.start()
|
||||
|
||||
# start a thread to store the highest scoring recent person frame
|
||||
best_person_frame = BestPersonFrame(objects_parsed, recent_frames, DETECTED_OBJECTS)
|
||||
best_person_frame.start()
|
||||
|
||||
# start a thread to parse objects from the queue
|
||||
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS, regions)
|
||||
object_parser.start()
|
||||
# start a thread to expire objects from the detected objects list
|
||||
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
|
||||
object_cleaner.start()
|
||||
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("On connect called")
|
||||
@ -128,84 +47,82 @@ def main():
|
||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||
if not MQTT_USER is None:
|
||||
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
||||
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames
|
||||
# TODO: set length to 1.5x the number of total regions
|
||||
prepped_frame_queue = queue.Queue(6)
|
||||
|
||||
# start a thread to publish object scores (currently only person)
|
||||
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# start the process of capturing frames
|
||||
capture_process.start()
|
||||
print("capture_process pid ", capture_process.pid)
|
||||
camera = Camera('back', CONFIG['cameras']['back'], prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
cameras = {
|
||||
'back': camera
|
||||
}
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
prepped_frame_queue
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
|
||||
camera.start()
|
||||
camera.join()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
# app = Flask(__name__)
|
||||
|
||||
@app.route('/best_person.jpg')
|
||||
def best_person():
|
||||
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
# @app.route('/best_person.jpg')
|
||||
# def best_person():
|
||||
# frame = np.zeros(frame_shape, np.uint8) if camera.get_best_person() is None else camera.get_best_person()
|
||||
# ret, jpg = cv2.imencode('.jpg', frame)
|
||||
# response = make_response(jpg.tobytes())
|
||||
# response.headers['Content-Type'] = 'image/jpg'
|
||||
# return response
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
# return a multipart response
|
||||
return Response(imagestream(),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
def imagestream():
|
||||
while True:
|
||||
# max out at 5 FPS
|
||||
time.sleep(0.2)
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = DETECTED_OBJECTS.copy()
|
||||
# lock and make a copy of the current frame
|
||||
with frame_lock:
|
||||
frame = frame_arr.copy()
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
obj['ymax'],
|
||||
obj['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
# @app.route('/')
|
||||
# def index():
|
||||
# # return a multipart response
|
||||
# return Response(imagestream(),
|
||||
# mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
# def imagestream():
|
||||
# while True:
|
||||
# # max out at 5 FPS
|
||||
# time.sleep(0.2)
|
||||
# # make a copy of the current detected objects
|
||||
# detected_objects = DETECTED_OBJECTS.copy()
|
||||
# # lock and make a copy of the current frame
|
||||
# with frame_lock:
|
||||
# frame = frame_arr.copy()
|
||||
# # convert to RGB for drawing
|
||||
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# # draw the bounding boxes on the screen
|
||||
# for obj in detected_objects:
|
||||
# vis_util.draw_bounding_box_on_image_array(frame,
|
||||
# obj['ymin'],
|
||||
# obj['xmin'],
|
||||
# obj['ymax'],
|
||||
# obj['xmax'],
|
||||
# color='red',
|
||||
# thickness=2,
|
||||
# display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
# use_normalized_coordinates=False)
|
||||
|
||||
for region in regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
# for region in regions:
|
||||
# color = (255,255,255)
|
||||
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
# color, 2)
|
||||
|
||||
# convert back to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
# # convert back to BGR
|
||||
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# # encode the image into a jpg
|
||||
# ret, jpg = cv2.imencode('.jpg', frame)
|
||||
# yield (b'--frame\r\n'
|
||||
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
capture_process.join()
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.join()
|
||||
frame_tracker.join()
|
||||
best_person_frame.join()
|
||||
object_parser.join()
|
||||
object_cleaner.join()
|
||||
mqtt_publisher.join()
|
||||
# app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -22,11 +22,11 @@ def ReadLabelFile(file_path):
|
||||
return ret
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, prepped_frame_queue, object_queue):
|
||||
def __init__(self, cameras, prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
self.object_queue = object_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
@ -41,30 +41,32 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
# print(engine.get_inference_time())
|
||||
print(self.engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
self.object_queue.put({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
parsed_objects.append({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready,
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_name = camera_name
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
@ -101,6 +103,7 @@ class FramePrepper(threading.Thread):
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
self.prepped_frame_queue.put({
|
||||
'camera_name': self.camera_name,
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
|
@ -4,53 +4,17 @@ import threading
|
||||
import cv2
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
class ObjectParser(threading.Thread):
|
||||
def __init__(self, object_queue, objects_parsed, detected_objects, regions):
|
||||
def __init__(self, cameras, object_queue, detected_objects, regions):
|
||||
threading.Thread.__init__(self)
|
||||
self._object_queue = object_queue
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.cameras = cameras
|
||||
self.object_queue = object_queue
|
||||
self.regions = regions
|
||||
|
||||
def run(self):
|
||||
# frame_times = {}
|
||||
while True:
|
||||
obj = self._object_queue.get()
|
||||
# filter out persons
|
||||
# [obj['score'] for obj in detected_objects if obj['name'] == 'person']
|
||||
if obj['name'] == 'person':
|
||||
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
# find the matching region
|
||||
region = None
|
||||
for r in self.regions:
|
||||
if (
|
||||
obj['xmin'] >= r['x_offset'] and
|
||||
obj['ymin'] >= r['y_offset'] and
|
||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
||||
obj['ymax'] <= r['y_offset']+r['size']
|
||||
):
|
||||
region = r
|
||||
break
|
||||
|
||||
# if the min person area is larger than the
|
||||
# detected person, don't add it to detected objects
|
||||
if region and region['min_person_area'] > person_area:
|
||||
continue
|
||||
|
||||
|
||||
# frame_time = obj['frame_time']
|
||||
# if frame_time in frame_times:
|
||||
# if frame_times[frame_time] == 7:
|
||||
# del frame_times[frame_time]
|
||||
# else:
|
||||
# frame_times[frame_time] += 1
|
||||
# else:
|
||||
# frame_times[frame_time] = 1
|
||||
# print(frame_times)
|
||||
self._detected_objects.append(obj)
|
||||
|
||||
# notify that objects were parsed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
obj = self.object_queue.get()
|
||||
self.cameras[obj['camera_name']].add_object(obj)
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
|
133
frigate/video.py
133
frigate/video.py
@ -1,8 +1,14 @@
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import cv2
|
||||
import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
from . util import tonumpyarray
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, ObjectParser, BestPersonFrame
|
||||
from . mqtt import MqttObjectPublisher
|
||||
|
||||
# fetch the frames as fast a possible, only decoding the frames when the
|
||||
# detection_process has consumed the current frame
|
||||
@ -85,3 +91,130 @@ class FrameTracker(threading.Thread):
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
del self.recent_frames[k]
|
||||
|
||||
def get_frame_shape(rtsp_url):
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(rtsp_url)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
|
||||
def get_rtsp_url(rtsp_config):
|
||||
if (rtsp_config['password'].startswith('$')):
|
||||
rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
|
||||
return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
|
||||
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
|
||||
rtsp_config['path'])
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
self.recent_frames = {}
|
||||
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
|
||||
self.regions = self.config['regions']
|
||||
self.frame_shape = get_frame_shape(self.rtsp_url)
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
|
||||
# compute the flattened array length from the shape of the frame
|
||||
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
# create shared array for storing the full frame image data
|
||||
self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
|
||||
# create shared value for storing the frame_time
|
||||
self.shared_frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
self.frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
self.objects_parsed = mp.Condition()
|
||||
|
||||
# shape current frame so it can be treated as a numpy image
|
||||
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
|
||||
|
||||
# create the process to capture frames from the RTSP stream and store in a shared array
|
||||
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
|
||||
self.capture_process.daemon = True
|
||||
|
||||
# for each region, create a separate thread to resize the region and prep for detection
|
||||
self.detection_prep_threads = []
|
||||
for region in self.config['regions']:
|
||||
self.detection_prep_threads.append(FramePrepper(
|
||||
self.name,
|
||||
self.shared_frame_np,
|
||||
self.shared_frame_time,
|
||||
self.frame_ready,
|
||||
self.frame_lock,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
|
||||
self.frame_ready, self.frame_lock, self.recent_frames)
|
||||
self.frame_tracker.start()
|
||||
|
||||
# start a thread to store the highest scoring recent person frame
|
||||
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
|
||||
self.best_person_frame.start()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to publish object scores (currently only person)
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
|
||||
mqtt_publisher.start()
|
||||
|
||||
def start(self):
|
||||
self.capture_process.start()
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in self.detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
|
||||
def join(self):
|
||||
self.capture_process.join()
|
||||
|
||||
def get_capture_pid(self):
|
||||
return self.capture_process.pid
|
||||
|
||||
def add_objects(self, objects):
|
||||
if len(objects) == 0:
|
||||
return
|
||||
|
||||
for obj in objects:
|
||||
if obj['name'] == 'person':
|
||||
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
# find the matching region
|
||||
region = None
|
||||
for r in self.regions:
|
||||
if (
|
||||
obj['xmin'] >= r['x_offset'] and
|
||||
obj['ymin'] >= r['y_offset'] and
|
||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
||||
obj['ymax'] <= r['y_offset']+r['size']
|
||||
):
|
||||
region = r
|
||||
break
|
||||
|
||||
# if the min person area is larger than the
|
||||
# detected person, don't add it to detected objects
|
||||
if region and region['min_person_area'] > person_area:
|
||||
continue
|
||||
|
||||
self.detected_objects.append(obj)
|
||||
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.notify_all()
|
||||
|
||||
def get_best_person(self):
|
||||
return self.best_person_frame.best_frame
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user