fixing a few things

This commit is contained in:
Blake Blackshear 2020-01-02 07:38:50 -06:00
parent 5b4c6e50bc
commit 02efb6f415
2 changed files with 18 additions and 47 deletions

View File

@ -133,9 +133,6 @@ class DetectedObjectsProcessor(threading.Thread):
# print(f"{frame['frame_time']} no remaining regions")
self.camera.finished_frame_queue.put(frame['frame_time'])
with self.camera.objects_parsed:
self.camera.objects_parsed.notify_all()
# Thread that checks finished frames for clipped objects and sends back
# for processing if needed
class RegionRefiner(threading.Thread):
@ -166,7 +163,7 @@ class RegionRefiner(threading.Thread):
self.camera.detected_objects[frame_time] = [obj for obj in self.camera.detected_objects[frame_time] if obj['clipped'] == False]
# print(f"{frame_time} found {len(object_groups)} groups")
clipped_object = False
look_again = False
# find the largest unclipped object in each group
for group in object_groups:
unclipped_objects = [obj for obj in group if obj['clipped'] == False]
@ -198,10 +195,12 @@ class RegionRefiner(threading.Thread):
'y_offset': y_offset
})
self.camera.dynamic_region_fps.update()
clipped_object = True
look_again = True
# TODO: zoom in on unclipped low confidence objects
# else: ...
# if we found a clipped object, then this frame is not ready for processing
if clipped_object:
# if we are looking again, then this frame is not ready for processing
if look_again:
continue
# dedupe the unclipped objects
@ -220,14 +219,19 @@ class RegionRefiner(threading.Thread):
else:
if deduped_objects[duplicate]['score'] < obj['score']:
deduped_objects[duplicate] = obj
self.camera.detected_objects[frame_time] = deduped_objects
with self.camera.objects_parsed:
self.camera.objects_parsed.notify_all()
# print(f"{frame_time} is actually finished")
# keep adding frames to the refined queue as long as they are finished
with self.camera.regions_in_process_lock:
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
self.camera.refined_frame_queue.put(self.camera.frame_queue.get())
self.camera.last_processed_frame = self.camera.frame_queue.get()
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
def has_overlap(self, new_obj, obj, overlap=.7):
# compute intersection rectangle with existing object and new objects region
@ -265,9 +269,9 @@ class ObjectTracker(threading.Thread):
while True:
# TODO: track objects
frame_time = self.camera.refined_frame_queue.get()
f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
f.write(self.camera.frame_with_objects(frame_time))
f.close()
# f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
# f.write(self.camera.frame_with_objects(frame_time))
# f.close()
def register(self, index, obj):

View File

@ -116,6 +116,7 @@ class Camera:
self.detected_objects = defaultdict(lambda: [])
self.tracked_objects = []
self.frame_cache = {}
self.last_processed_frame = None
# queue for re-assembling frames in order
self.frame_queue = queue.Queue()
# track how many regions have been requested for a frame so we know when a frame is complete
@ -332,45 +333,11 @@ class Camera:
return jpg.tobytes()
def get_current_frame_with_objects(self):
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
frame_time = self.frame_time.value
frame_time = self.last_processed_frame
if frame_time == self.cached_frame_with_objects['frame_time']:
return self.cached_frame_with_objects['frame_bytes']
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# draw the bounding boxes on the screen
for obj in [obj for frame_list in detected_objects.values() for obj in frame_list]:
# for obj in detected_objects[frame_time]:
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
(obj['region']['xmax'], obj['region']['ymax']),
(0,255,0), 2)
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# print fps
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
frame_bytes = jpg.tobytes()
frame_bytes = self.frame_with_objects(frame_time)
self.cached_frame_with_objects = {
'frame_bytes': frame_bytes,