mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
dedupe detected objects
This commit is contained in:
parent
9cc46a71cb
commit
5b4c6e50bc
@ -31,7 +31,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.4, top_k=5)
|
||||
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.2, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
|
@ -122,33 +122,15 @@ class DetectedObjectsProcessor(threading.Thread):
|
||||
# if self.camera.mask[y_location][x_location] == [0]:
|
||||
# continue
|
||||
|
||||
# see if the current object is a duplicate
|
||||
# TODO: still need to decide which copy to keep
|
||||
obj['duplicate'] = False
|
||||
for existing_obj in self.camera.detected_objects[frame['frame_time']]:
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(existing_obj['box'], obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(obj['box'], existing_obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than ?, flag as duplicate
|
||||
if iou > .7:
|
||||
obj['duplicate'] = True
|
||||
break
|
||||
|
||||
self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# print(f"Remaining regions for {frame['frame_time']}: {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
|
||||
if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[frame['frame_time']]
|
||||
# print('Finished frame: ', frame['frame_time'])
|
||||
# print(f"{frame['frame_time']} no remaining regions")
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
|
||||
with self.camera.objects_parsed:
|
||||
@ -183,9 +165,8 @@ class RegionRefiner(threading.Thread):
|
||||
# just keep the unclipped objects
|
||||
self.camera.detected_objects[frame_time] = [obj for obj in self.camera.detected_objects[frame_time] if obj['clipped'] == False]
|
||||
|
||||
# print(f"{frame_time} found {len(object_groups)} groups {object_groups}")
|
||||
# print(f"{frame_time} found {len(object_groups)} groups")
|
||||
clipped_object = False
|
||||
# deduped_objects = []
|
||||
# find the largest unclipped object in each group
|
||||
for group in object_groups:
|
||||
unclipped_objects = [obj for obj in group if obj['clipped'] == False]
|
||||
@ -219,23 +200,36 @@ class RegionRefiner(threading.Thread):
|
||||
self.camera.dynamic_region_fps.update()
|
||||
clipped_object = True
|
||||
|
||||
# add the largest unclipped object
|
||||
# TODO: this makes no sense
|
||||
# deduped_objects.append(max(unclipped_objects, key=lambda obj: obj['area']))
|
||||
|
||||
# if we found a clipped object, then this frame is not ready for processing
|
||||
if clipped_object:
|
||||
continue
|
||||
|
||||
# dedupe the unclipped objects
|
||||
deduped_objects = []
|
||||
for obj in self.camera.detected_objects[frame_time]:
|
||||
duplicate = None
|
||||
for index, deduped_obj in enumerate(deduped_objects):
|
||||
# if the IOU is more than 0.7, consider it a duplicate
|
||||
if self.has_overlap(obj, deduped_obj, .5):
|
||||
duplicate = index
|
||||
break
|
||||
|
||||
# get the higher scoring object
|
||||
if duplicate is None:
|
||||
deduped_objects.append(obj)
|
||||
else:
|
||||
if deduped_objects[duplicate]['score'] < obj['score']:
|
||||
deduped_objects[duplicate] = obj
|
||||
self.camera.detected_objects[frame_time] = deduped_objects
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
# self.camera.detected_objects[frame_time] = deduped_objects
|
||||
|
||||
# keep adding frames to the refined queue as long as they are finished
|
||||
with self.camera.regions_in_process_lock:
|
||||
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
self.camera.refined_frame_queue.put(self.camera.frame_queue.get())
|
||||
|
||||
def has_overlap(self, new_obj, obj, overlap=0):
|
||||
def has_overlap(self, new_obj, obj, overlap=.7):
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
|
||||
|
@ -17,7 +17,7 @@ def ReadLabelFile(file_path):
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*1.5)
|
||||
size = int(max(xmax-xmin, ymax-ymin)*2)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
Loading…
Reference in New Issue
Block a user