handle various scenarios with external process failures

This commit is contained in:
Blake Blackshear 2020-03-09 21:12:19 -05:00
parent a60b9211d2
commit 3a9781c4f8
6 changed files with 218 additions and 133 deletions

View File

@ -52,6 +52,12 @@ RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite
mv /detect.tflite /cpu_model.tflite && \
rm /cpu_model.zip
RUN apt -qq update && apt -qq install --no-install-recommends -y \
gdb \
python3.7-dbg \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .

View File

@ -1,4 +1,7 @@
import os
import sys
import traceback
import signal
import cv2
import time
import datetime
@ -58,27 +61,50 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
def start_plasma_store():
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
return None
return plasma_process
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor, plasma_process):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.object_processor = object_processor
self.plasma_process = plasma_process
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(30)
# check the plasma process
rc = self.plasma_process.poll()
if rc != None:
print(f"plasma_process exited unexpectedly with {rc}")
self.plasma_process = start_plasma_store()
time.sleep(10)
# check the detection process
if (self.tflite_process.detection_start.value > 0.0 and
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
elif not self.tflite_process.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
# check the camera processes
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if not process.is_alive():
@ -86,14 +112,33 @@ class CameraWatchdog(threading.Thread):
camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0
camera_process['ffmpeg_pid'].value = 0
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
self.tflite_process.detection_queue, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'],
camera_process['read_start'], camera_process['ffmpeg_pid']))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Camera_process started for {name}: {process.pid}")
if (camera_process['read_start'].value > 0.0 and
datetime.datetime.now().timestamp() - camera_process['read_start'].value > 10):
print(f"Process for {name} has been reading from ffmpeg for over 10 seconds long. Killing ffmpeg...")
ffmpeg_pid = camera_process['ffmpeg_pid'].value
if ffmpeg_pid != 0:
try:
os.kill(ffmpeg_pid, signal.SIGTERM)
except OSError:
print(f"Unable to terminate ffmpeg with pid {ffmpeg_pid}")
time.sleep(10)
try:
os.kill(ffmpeg_pid, signal.SIGKILL)
print(f"Unable to kill ffmpeg with pid {ffmpeg_pid}")
except OSError:
pass
def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
@ -117,14 +162,7 @@ def main():
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# start plasma store
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
raise RuntimeError("plasma_store exited unexpectedly with "
"code %d" % (rc,))
plasma_process = start_plasma_store()
##
# Setup config defaults for cameras
@ -135,7 +173,7 @@ def main():
}
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue()
tracked_objects_queue = mp.SimpleQueue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
@ -146,11 +184,14 @@ def main():
camera_processes[name] = {
'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0)
'detection_fps': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0)
}
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detection_queue, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'],
camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'],
camera_processes[name]['read_start'], camera_processes[name]['ffmpeg_pid']))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
@ -161,7 +202,7 @@ def main():
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor, plasma_process)
camera_watchdog.start()
# create a flask app that encodes frames a mjpeg on demand
@ -174,6 +215,23 @@ def main():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stack')
def processor_stack():
frame = sys._current_frames().get(object_processor.ident, None)
if frame:
return "<br>".join(traceback.format_stack(frame)), 200
else:
return "no frame found", 200
@app.route('/debug/print_stack')
def print_stack():
pid = int(request.args.get('pid', 0))
if pid == 0:
return "missing pid", 200
else:
os.kill(pid, signal.SIGUSR1)
return "check logs", 200
@app.route('/debug/stats')
def stats():
stats = {}
@ -185,21 +243,22 @@ def main():
stats[name] = {
'fps': round(camera_stats['fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2)
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'read_start': camera_stats['read_start'].value,
'pid': camera_stats['process'].pid,
'ffmpeg_pid': camera_stats['ffmpeg_pid'].value
}
stats['coral'] = {
'fps': round(total_detection_fps, 2),
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
'detection_queue': tflite_process.detection_queue.qsize(),
'detection_start': tflite_process.detection_start.value
'detection_start': tflite_process.detection_start.value,
'pid': tflite_process.detect_process.pid
}
rc = plasma_process.poll()
rc = camera_watchdog.plasma_process.poll()
stats['plasma_store_rc'] = rc
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')

View File

@ -7,7 +7,7 @@ import SharedArray as sa
import pyarrow.plasma as plasma
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond
from frigate.util import EventsPerSecond, listen
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@ -64,6 +64,7 @@ class ObjectDetector():
def run_detector(detection_queue, avg_speed, start):
print(f"Starting detection process: {os.getpid()}")
listen()
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
@ -87,7 +88,7 @@ def run_detector(detection_queue, avg_speed, start):
class EdgeTPUProcess():
def __init__(self):
self.detection_queue = mp.Queue()
self.detection_queue = mp.SimpleQueue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None

View File

@ -29,7 +29,6 @@ class TrackedObjectProcessor(threading.Thread):
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.plasma_client = plasma.connect("/tmp/plasma")
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
@ -49,101 +48,106 @@ class TrackedObjectProcessor(threading.Thread):
def run(self):
while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
try:
self.plasma_client = plasma.connect("/tmp/plasma")
while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
config = self.config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
config = self.config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
###
# Draw tracked objects on the frame
###
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
###
# Draw tracked objects on the frame
###
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
# store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id']
if not previous_object_id is None:
self.plasma_client.delete([previous_object_id])
self.camera_data[camera]['object_id'] = object_id
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
# store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id']
if not previous_object_id is None:
self.plasma_client.delete([previous_object_id])
self.camera_data[camera]['object_id'] = object_id
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
except:
pass

View File

@ -1,4 +1,6 @@
import datetime
import signal
import traceback
import collections
import numpy as np
import cv2
@ -127,3 +129,9 @@ class EventsPerSecond:
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)

View File

@ -15,7 +15,7 @@ import copy
import itertools
import json
from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
@ -98,28 +98,32 @@ def create_tensor_input(frame, region):
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, pid, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.wait(timeout=30)
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.wait()
ffmpeg_process.communicate()
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
pid.value = process.pid
return process
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps, read_start, ffmpeg_pid):
print(f"Starting process for {name}: {os.getpid()}")
listen()
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_restart_delay = ffmpeg.get('restart_delay', 0)
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
@ -176,7 +180,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
object_tracker = ObjectTracker(10)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid)
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
@ -187,19 +191,22 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
start = datetime.datetime.now().timestamp()
rc = ffmpeg_process.poll()
if rc != None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
print(f"Letting {name} rest for {ffmpeg_restart_delay} seconds before restarting...")
time.sleep(ffmpeg_restart_delay)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid, ffmpeg_process)
time.sleep(10)
read_start.value = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size)
duration = datetime.datetime.now().timestamp()-start
duration = datetime.datetime.now().timestamp()-read_start.value
read_start.value = 0.0
avg_wait = (avg_wait*99+duration)/100
if not frame_bytes:
rc = ffmpeg_process.poll()
if rc is not None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
time.sleep(10)
else:
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
if len(frame_bytes) == 0:
print(f"{name}: ffmpeg_process didnt return any bytes")
continue
# limit frame rate