mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
Add support for TensorRT v10 (multiple api calls have changed) (#11166)
* Add support for TensorRT v10 (multiple api calls have changed) * Remove unnecessary size check in TensorRT v10 block * Refactor to reduce code duplication * Fix wrong function name in new _get_binding_dtype function and only return input check (not assertion) in new _binding_is_input function * Add space around TRT_VERSION variable assignment (=) to respect linting * More linting fix * Update frigate/detectors/plugins/tensorrt.py Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * More linting --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
parent
e91f3d8d9b
commit
592b645231
@ -7,6 +7,8 @@ try:
|
||||
import tensorrt as trt
|
||||
from cuda import cuda
|
||||
|
||||
TRT_VERSION = int(trt.__version__[0 : trt.__version__.find(".")])
|
||||
|
||||
TRT_SUPPORT = True
|
||||
except ModuleNotFoundError:
|
||||
TRT_SUPPORT = False
|
||||
@ -88,20 +90,46 @@ class TensorRtDetector(DetectionApi):
|
||||
with open(model_path, "rb") as f, trt.Runtime(self.trt_logger) as runtime:
|
||||
return runtime.deserialize_cuda_engine(f.read())
|
||||
|
||||
def _binding_is_input(self, binding):
|
||||
if TRT_VERSION < 10:
|
||||
return self.engine.binding_is_input(binding)
|
||||
else:
|
||||
return binding == "input"
|
||||
|
||||
def _get_binding_dims(self, binding):
|
||||
if TRT_VERSION < 10:
|
||||
return self.engine.get_binding_shape(binding)
|
||||
else:
|
||||
return self.engine.get_tensor_shape(binding)
|
||||
|
||||
def _get_binding_dtype(self, binding):
|
||||
if TRT_VERSION < 10:
|
||||
return self.engine.get_binding_dtype(binding)
|
||||
else:
|
||||
return self.engine.get_tensor_dtype(binding)
|
||||
|
||||
def _execute(self):
|
||||
if TRT_VERSION < 10:
|
||||
return self.context.execute_async_v2(
|
||||
bindings=self.bindings, stream_handle=self.stream
|
||||
)
|
||||
else:
|
||||
return self.context.execute_v2(self.bindings)
|
||||
|
||||
def _get_input_shape(self):
|
||||
"""Get input shape of the TensorRT YOLO engine."""
|
||||
binding = self.engine[0]
|
||||
assert self.engine.binding_is_input(binding)
|
||||
binding_dims = self.engine.get_binding_shape(binding)
|
||||
assert self._binding_is_input(binding)
|
||||
binding_dims = self._get_binding_dims(binding)
|
||||
if len(binding_dims) == 4:
|
||||
return (
|
||||
tuple(binding_dims[2:]),
|
||||
trt.nptype(self.engine.get_binding_dtype(binding)),
|
||||
trt.nptype(self._get_binding_dtype(binding)),
|
||||
)
|
||||
elif len(binding_dims) == 3:
|
||||
return (
|
||||
tuple(binding_dims[1:]),
|
||||
trt.nptype(self.engine.get_binding_dtype(binding)),
|
||||
trt.nptype(self._get_binding_dtype(binding)),
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
@ -115,7 +143,7 @@ class TensorRtDetector(DetectionApi):
|
||||
bindings = []
|
||||
output_idx = 0
|
||||
for binding in self.engine:
|
||||
binding_dims = self.engine.get_binding_shape(binding)
|
||||
binding_dims = self._get_binding_dims(binding)
|
||||
if len(binding_dims) == 4:
|
||||
# explicit batch case (TensorRT 7+)
|
||||
size = trt.volume(binding_dims)
|
||||
@ -126,21 +154,21 @@ class TensorRtDetector(DetectionApi):
|
||||
raise ValueError(
|
||||
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
||||
)
|
||||
nbytes = size * self.engine.get_binding_dtype(binding).itemsize
|
||||
nbytes = size * self._get_binding_dtype(binding).itemsize
|
||||
# Allocate host and device buffers
|
||||
err, host_mem = cuda.cuMemHostAlloc(
|
||||
nbytes, Flags=cuda.CU_MEMHOSTALLOC_DEVICEMAP
|
||||
)
|
||||
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAllocHost returned {err}"
|
||||
logger.debug(
|
||||
f"Allocated Tensor Binding {binding} Memory {nbytes} Bytes ({size} * {self.engine.get_binding_dtype(binding)})"
|
||||
f"Allocated Tensor Binding {binding} Memory {nbytes} Bytes ({size} * {self._get_binding_dtype(binding)})"
|
||||
)
|
||||
err, device_mem = cuda.cuMemAlloc(nbytes)
|
||||
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAlloc returned {err}"
|
||||
# Append the device buffer to device bindings.
|
||||
bindings.append(int(device_mem))
|
||||
# Append to the appropriate list.
|
||||
if self.engine.binding_is_input(binding):
|
||||
if self._binding_is_input(binding):
|
||||
logger.debug(f"Input has Shape {binding_dims}")
|
||||
inputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
||||
else:
|
||||
@ -170,9 +198,7 @@ class TensorRtDetector(DetectionApi):
|
||||
]
|
||||
|
||||
# Run inference.
|
||||
if not self.context.execute_async_v2(
|
||||
bindings=self.bindings, stream_handle=self.stream
|
||||
):
|
||||
if not self._execute():
|
||||
logger.warn("Execute returned false")
|
||||
|
||||
# Transfer predictions back from the GPU.
|
||||
|
Loading…
Reference in New Issue
Block a user