mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
Rework motion data calculation (#10459)
* Store motion data as a percent of total area * Exclude historical data * Use max so cameras without motion don't invlidate good data:
This commit is contained in:
parent
6a02e65fc2
commit
61c4ed9f12
@ -5,12 +5,7 @@ from datetime import datetime, timedelta
|
||||
from functools import reduce
|
||||
|
||||
import pandas as pd
|
||||
from flask import (
|
||||
Blueprint,
|
||||
jsonify,
|
||||
make_response,
|
||||
request,
|
||||
)
|
||||
from flask import Blueprint, jsonify, make_response, request
|
||||
from peewee import Case, DoesNotExist, fn, operator
|
||||
|
||||
from frigate.models import Recordings, ReviewSegment
|
||||
@ -363,35 +358,23 @@ def motion_activity():
|
||||
)
|
||||
|
||||
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
|
||||
clauses.append((Recordings.motion <= 100))
|
||||
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
clauses.append((Recordings.camera << camera_list))
|
||||
|
||||
all_recordings: list[Recordings] = (
|
||||
data: list[Recordings] = (
|
||||
Recordings.select(
|
||||
Recordings.start_time,
|
||||
Recordings.duration,
|
||||
Recordings.objects,
|
||||
Recordings.motion,
|
||||
)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.order_by(Recordings.start_time.asc())
|
||||
.dicts()
|
||||
.iterator()
|
||||
)
|
||||
|
||||
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
|
||||
# periods where active objects / audio was detected will cause motion to be scaled down
|
||||
data: list[dict[str, float]] = []
|
||||
|
||||
for rec in all_recordings:
|
||||
data.append(
|
||||
{
|
||||
"start_time": rec.start_time,
|
||||
"motion": rec.motion if rec.objects == 0 else 0,
|
||||
}
|
||||
)
|
||||
|
||||
# get scale in seconds
|
||||
scale = request.args.get("scale", type=int, default=30)
|
||||
|
||||
@ -403,16 +386,10 @@ def motion_activity():
|
||||
df.set_index(["start_time"], inplace=True)
|
||||
|
||||
# normalize data
|
||||
df = df.resample(f"{scale}S").sum().fillna(0.0)
|
||||
mean = df["motion"].mean()
|
||||
std = df["motion"].std()
|
||||
df["motion"] = (df["motion"] - mean) / std
|
||||
outliers = df.quantile(0.999)["motion"]
|
||||
df[df > outliers] = outliers
|
||||
df["motion"] = (
|
||||
(df["motion"] - df["motion"].min())
|
||||
/ (df["motion"].max() - df["motion"].min())
|
||||
* 100
|
||||
df = (
|
||||
df.resample(f"{scale}S")
|
||||
.apply(lambda x: max(x, key=abs, default=0.0))
|
||||
.fillna(0.0)
|
||||
)
|
||||
|
||||
# change types for output
|
||||
|
@ -71,6 +71,13 @@ class RecordingMaintainer(threading.Thread):
|
||||
self.audio_recordings_info: dict[str, list] = defaultdict(list)
|
||||
self.end_time_cache: dict[str, Tuple[datetime.datetime, float]] = {}
|
||||
|
||||
self.camera_frame_area: dict[str, int] = {}
|
||||
|
||||
for camera in self.config.cameras.values():
|
||||
self.camera_frame_area[camera.name] = (
|
||||
camera.detect.width * camera.detect.height * 0.1
|
||||
)
|
||||
|
||||
async def move_files(self) -> None:
|
||||
cache_files = [
|
||||
d
|
||||
@ -289,8 +296,9 @@ class RecordingMaintainer(threading.Thread):
|
||||
def segment_stats(
|
||||
self, camera: str, start_time: datetime.datetime, end_time: datetime.datetime
|
||||
) -> SegmentInfo:
|
||||
video_frame_count = 0
|
||||
active_count = 0
|
||||
motion_count = 0
|
||||
total_motion_area = 0
|
||||
for frame in self.object_recordings_info[camera]:
|
||||
# frame is after end time of segment
|
||||
if frame[0] > end_time.timestamp():
|
||||
@ -299,6 +307,7 @@ class RecordingMaintainer(threading.Thread):
|
||||
if frame[0] < start_time.timestamp():
|
||||
continue
|
||||
|
||||
video_frame_count += 1
|
||||
active_count += len(
|
||||
[
|
||||
o
|
||||
@ -307,7 +316,21 @@ class RecordingMaintainer(threading.Thread):
|
||||
]
|
||||
)
|
||||
|
||||
motion_count += sum([area(box) for box in frame[2]])
|
||||
total_motion_area += sum([area(box) for box in frame[2]])
|
||||
|
||||
if video_frame_count > 0:
|
||||
normalized_motion_area = min(
|
||||
int(
|
||||
(
|
||||
total_motion_area
|
||||
/ (self.camera_frame_area[camera] * video_frame_count)
|
||||
)
|
||||
* 100
|
||||
),
|
||||
100,
|
||||
)
|
||||
else:
|
||||
normalized_motion_area = 0
|
||||
|
||||
audio_values = []
|
||||
for frame in self.audio_recordings_info[camera]:
|
||||
@ -327,7 +350,7 @@ class RecordingMaintainer(threading.Thread):
|
||||
|
||||
average_dBFS = 0 if not audio_values else np.average(audio_values)
|
||||
|
||||
return SegmentInfo(motion_count, active_count, round(average_dBFS))
|
||||
return SegmentInfo(normalized_motion_area, active_count, round(average_dBFS))
|
||||
|
||||
async def move_segment(
|
||||
self,
|
||||
|
Loading…
Reference in New Issue
Block a user