memryx: fix model download bug when using multiple detectors (#20030)

* Add locking for model download files

* ruff format

---------

Co-authored-by: Abinila Siva <abinila.siva@memryx.com>
This commit is contained in:
Tim Wesley 2025-09-15 09:48:55 -04:00 committed by GitHub
parent 03fe054078
commit 6cd1d1f205
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -177,6 +177,29 @@ class MemryXDetector(DetectionApi):
logger.error(f"Failed to initialize MemryX model: {e}")
raise
def _acquire_file_lock(self, lock_path: str, timeout: int = 60, poll: float = 0.2):
"""
Create an exclusive lock file. Blocks (with polling) until it can acquire,
or raises TimeoutError. Uses only stdlib (os.O_EXCL).
"""
start = time.time()
while True:
try:
fd = os.open(lock_path, os.O_CREAT | os.O_EXCL | os.O_RDWR)
os.close(fd)
return
except FileExistsError:
if time.time() - start > timeout:
raise TimeoutError(f"Timeout waiting for lock: {lock_path}")
time.sleep(poll)
def _release_file_lock(self, lock_path: str):
"""Best-effort removal of the lock file."""
try:
os.remove(lock_path)
except FileNotFoundError:
pass
def load_yolo_constants(self):
base = f"{self.cache_dir}/{self.model_folder}"
# constants for yolov9 post-processing
@ -188,122 +211,135 @@ class MemryXDetector(DetectionApi):
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir, exist_ok=True)
# ---------- CASE 1: user provided a custom model path ----------
if self.memx_model_path:
if not self.memx_model_path.endswith(".zip"):
raise ValueError(
f"Invalid model path: {self.memx_model_path}. "
"Only .zip files are supported. Please provide a .zip model archive."
)
if not os.path.exists(self.memx_model_path):
raise FileNotFoundError(
f"Custom model zip not found: {self.memx_model_path}"
)
logger.info(f"User provided zip model: {self.memx_model_path}")
# Extract custom zip into a separate area so it never clashes with MemryX cache
custom_dir = os.path.join(
self.cache_dir, "custom_models", self.model_folder
)
if os.path.isdir(custom_dir):
shutil.rmtree(custom_dir)
os.makedirs(custom_dir, exist_ok=True)
with zipfile.ZipFile(self.memx_model_path, "r") as zip_ref:
zip_ref.extractall(custom_dir)
logger.info(f"Custom model extracted to {custom_dir}.")
# Find .dfp and optional *_post.onnx recursively
dfp_candidates = glob.glob(
os.path.join(custom_dir, "**", "*.dfp"), recursive=True
)
post_candidates = glob.glob(
os.path.join(custom_dir, "**", "*_post.onnx"), recursive=True
)
if not dfp_candidates:
raise FileNotFoundError(
"No .dfp file found in custom model zip after extraction."
)
self.memx_model_path = dfp_candidates[0]
# Handle post model requirements by model type
if self.memx_model_type in [
ModelTypeEnum.yologeneric,
ModelTypeEnum.yolonas,
ModelTypeEnum.ssd,
]:
if not post_candidates:
raise FileNotFoundError(
f"No *_post.onnx file found in custom model zip for {self.memx_model_type.name}."
)
self.memx_post_model = post_candidates[0]
elif self.memx_model_type == ModelTypeEnum.yolox:
# Explicitly ignore any post model even if present
self.memx_post_model = None
else:
# Future model types can optionally use post if present
self.memx_post_model = post_candidates[0] if post_candidates else None
logger.info(f"Using custom model: {self.memx_model_path}")
return
# ---------- CASE 2: no custom model path -> use MemryX cached models ----------
model_subdir = os.path.join(self.cache_dir, self.model_folder)
dfp_path = os.path.join(model_subdir, self.expected_dfp_model)
post_path = (
os.path.join(model_subdir, self.expected_post_model)
if self.expected_post_model
else None
)
dfp_exists = os.path.exists(dfp_path)
post_exists = os.path.exists(post_path) if post_path else True
if dfp_exists and post_exists:
logger.info("Using cached models.")
self.memx_model_path = dfp_path
self.memx_post_model = post_path
if self.memx_model_type == ModelTypeEnum.yologeneric:
self.load_yolo_constants()
return
# ---------- CASE 3: download MemryX model (no cache) ----------
logger.info(
f"Model files not found locally. Downloading from {self.model_url}..."
)
zip_path = os.path.join(self.cache_dir, f"{self.model_folder}.zip")
lock_path = os.path.join(self.cache_dir, f".{self.model_folder}.lock")
self._acquire_file_lock(lock_path)
try:
if not os.path.exists(zip_path):
urllib.request.urlretrieve(self.model_url, zip_path)
logger.info(f"Model ZIP downloaded to {zip_path}. Extracting...")
# ---------- CASE 1: user provided a custom model path ----------
if self.memx_model_path:
if not self.memx_model_path.endswith(".zip"):
raise ValueError(
f"Invalid model path: {self.memx_model_path}. "
"Only .zip files are supported. Please provide a .zip model archive."
)
if not os.path.exists(self.memx_model_path):
raise FileNotFoundError(
f"Custom model zip not found: {self.memx_model_path}"
)
if not os.path.exists(model_subdir):
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(self.cache_dir)
logger.info(f"Model extracted to {self.cache_dir}.")
logger.info(f"User provided zip model: {self.memx_model_path}")
# Re-assign model paths after extraction
self.memx_model_path = os.path.join(model_subdir, self.expected_dfp_model)
self.memx_post_model = (
# Extract custom zip into a separate area so it never clashes with MemryX cache
custom_dir = os.path.join(
self.cache_dir, "custom_models", self.model_folder
)
if os.path.isdir(custom_dir):
shutil.rmtree(custom_dir)
os.makedirs(custom_dir, exist_ok=True)
with zipfile.ZipFile(self.memx_model_path, "r") as zip_ref:
zip_ref.extractall(custom_dir)
logger.info(f"Custom model extracted to {custom_dir}.")
# Find .dfp and optional *_post.onnx recursively
dfp_candidates = glob.glob(
os.path.join(custom_dir, "**", "*.dfp"), recursive=True
)
post_candidates = glob.glob(
os.path.join(custom_dir, "**", "*_post.onnx"), recursive=True
)
if not dfp_candidates:
raise FileNotFoundError(
"No .dfp file found in custom model zip after extraction."
)
self.memx_model_path = dfp_candidates[0]
# Handle post model requirements by model type
if self.memx_model_type in [
ModelTypeEnum.yologeneric,
ModelTypeEnum.yolonas,
ModelTypeEnum.ssd,
]:
if not post_candidates:
raise FileNotFoundError(
f"No *_post.onnx file found in custom model zip for {self.memx_model_type.name}."
)
self.memx_post_model = post_candidates[0]
elif self.memx_model_type == ModelTypeEnum.yolox:
# Explicitly ignore any post model even if present
self.memx_post_model = None
else:
# Future model types can optionally use post if present
self.memx_post_model = (
post_candidates[0] if post_candidates else None
)
logger.info(f"Using custom model: {self.memx_model_path}")
return
# ---------- CASE 2: no custom model path -> use MemryX cached models ----------
model_subdir = os.path.join(self.cache_dir, self.model_folder)
dfp_path = os.path.join(model_subdir, self.expected_dfp_model)
post_path = (
os.path.join(model_subdir, self.expected_post_model)
if self.expected_post_model
else None
)
if self.memx_model_type == ModelTypeEnum.yologeneric:
self.load_yolo_constants()
dfp_exists = os.path.exists(dfp_path)
post_exists = os.path.exists(post_path) if post_path else True
if dfp_exists and post_exists:
logger.info("Using cached models.")
self.memx_model_path = dfp_path
self.memx_post_model = post_path
if self.memx_model_type == ModelTypeEnum.yologeneric:
self.load_yolo_constants()
return
# ---------- CASE 3: download MemryX model (no cache) ----------
logger.info(
f"Model files not found locally. Downloading from {self.model_url}..."
)
zip_path = os.path.join(self.cache_dir, f"{self.model_folder}.zip")
try:
if not os.path.exists(zip_path):
urllib.request.urlretrieve(self.model_url, zip_path)
logger.info(f"Model ZIP downloaded to {zip_path}. Extracting...")
if not os.path.exists(model_subdir):
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(self.cache_dir)
logger.info(f"Model extracted to {self.cache_dir}.")
# Re-assign model paths after extraction
self.memx_model_path = os.path.join(
model_subdir, self.expected_dfp_model
)
self.memx_post_model = (
os.path.join(model_subdir, self.expected_post_model)
if self.expected_post_model
else None
)
if self.memx_model_type == ModelTypeEnum.yologeneric:
self.load_yolo_constants()
finally:
if os.path.exists(zip_path):
try:
os.remove(zip_path)
logger.info("Cleaned up ZIP file after extraction.")
except Exception as e:
logger.warning(
f"Failed to remove downloaded zip {zip_path}: {e}"
)
finally:
if os.path.exists(zip_path):
try:
os.remove(zip_path)
logger.info("Cleaned up ZIP file after extraction.")
except Exception as e:
logger.warning(f"Failed to remove downloaded zip {zip_path}: {e}")
self._release_file_lock(lock_path)
def send_input(self, connection_id, tensor_input: np.ndarray):
"""Pre-process (if needed) and send frame to MemryX input queue"""