mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-26 00:06:32 +01:00
improve detection processing and restart when stuck
This commit is contained in:
parent
d8aa73d26e
commit
a5bef89123
@ -31,7 +31,7 @@ FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
||||
FFMPEG_DEFAULT_CONFIG = {
|
||||
'global_args': FFMPEG_CONFIG.get('global_args',
|
||||
['-hide_banner','-loglevel','panic']),
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
[]),
|
||||
'input_args': FFMPEG_CONFIG.get('input_args',
|
||||
['-avoid_negative_ts', 'make_zero',
|
||||
@ -68,6 +68,11 @@ class CameraWatchdog(threading.Thread):
|
||||
# wait a bit before checking
|
||||
time.sleep(30)
|
||||
|
||||
if (self.tflite_process.detection_start.value > 0.0 and
|
||||
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
|
||||
print("Detection appears to be stuck. Restarting detection process")
|
||||
time.sleep(30)
|
||||
|
||||
for name, camera_process in self.camera_processes.items():
|
||||
process = camera_process['process']
|
||||
if not process.is_alive():
|
||||
@ -75,9 +80,8 @@ class CameraWatchdog(threading.Thread):
|
||||
camera_process['fps'].value = float(self.config[name]['fps'])
|
||||
camera_process['skipped_fps'].value = 0.0
|
||||
camera_process['detection_fps'].value = 0.0
|
||||
self.object_processor.camera_data[name]['current_frame_time'] = None
|
||||
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
self.tflite_process.detect_lock, self.tflite_process.detect_ready, self.tflite_process.frame_ready, self.tracked_objects_queue,
|
||||
self.tflite_process.detection_queue, self.tracked_objects_queue,
|
||||
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
|
||||
process.daemon = True
|
||||
camera_process['process'] = process
|
||||
@ -139,7 +143,7 @@ def main():
|
||||
'detection_fps': mp.Value('d', 0.0)
|
||||
}
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
|
||||
tflite_process.detection_queue, tracked_objects_queue,
|
||||
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
||||
camera_process.daemon = True
|
||||
camera_processes[name]['process'] = camera_process
|
||||
@ -173,14 +177,16 @@ def main():
|
||||
for name, camera_stats in camera_processes.items():
|
||||
total_detection_fps += camera_stats['detection_fps'].value
|
||||
stats[name] = {
|
||||
'fps': camera_stats['fps'].value,
|
||||
'skipped_fps': camera_stats['skipped_fps'].value,
|
||||
'detection_fps': camera_stats['detection_fps'].value
|
||||
'fps': round(camera_stats['fps'].value, 2),
|
||||
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2)
|
||||
}
|
||||
|
||||
stats['coral'] = {
|
||||
'fps': total_detection_fps,
|
||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
|
||||
'fps': round(total_detection_fps, 2),
|
||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
|
||||
'detection_queue': tflite_process.detection_queue.qsize(),
|
||||
'detection_start': tflite_process.detection_start.value
|
||||
}
|
||||
|
||||
rc = plasma_process.poll()
|
||||
|
@ -1,8 +1,10 @@
|
||||
import os
|
||||
import datetime
|
||||
import hashlib
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import SharedArray as sa
|
||||
import pyarrow.plasma as plasma
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond
|
||||
@ -60,77 +62,75 @@ class ObjectDetector():
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(detection_queue, avg_speed, start):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
object_detector = ObjectDetector()
|
||||
|
||||
while True:
|
||||
object_id_str = detection_queue.get()
|
||||
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
|
||||
# detect and put the output in the plasma store
|
||||
object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest()
|
||||
plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out))
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
start.value = 0.0
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self):
|
||||
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
|
||||
try:
|
||||
sa.delete("frame")
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
sa.delete("detections")
|
||||
except:
|
||||
pass
|
||||
|
||||
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
|
||||
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
|
||||
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
self.detection_queue = mp.Queue()
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.start_or_restart()
|
||||
|
||||
def run_detector(detect_ready, frame_ready, avg_speed):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
object_detector = ObjectDetector()
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
frame_ready.wait()
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# signal that the process is busy
|
||||
frame_ready.clear()
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
|
||||
def start_or_restart(self):
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.detect_process.terminate()
|
||||
print("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
print("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
|
||||
def __init__(self, name, labels, detection_queue):
|
||||
self.labels = load_labels(labels)
|
||||
|
||||
self.input_frame = sa.attach("frame")
|
||||
self.detections = sa.attach("detections")
|
||||
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
|
||||
self.detect_lock = detect_lock
|
||||
self.detect_ready = detect_ready
|
||||
self.frame_ready = frame_ready
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.detection_queue = detection_queue
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
with self.detect_lock:
|
||||
self.input_frame[:] = tensor_input
|
||||
# unset detections and signal that a frame is ready
|
||||
self.detect_ready.clear()
|
||||
self.frame_ready.set()
|
||||
# wait until the detection process is finished,
|
||||
self.detect_ready.wait()
|
||||
for d in self.detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
|
||||
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
||||
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
||||
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||
self.plasma_client.put(tensor_input, object_id_frame)
|
||||
self.detection_queue.put(now)
|
||||
raw_detections = self.plasma_client.get(object_id_detections)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.plasma_client.delete([object_id_frame, object_id_detections])
|
||||
self.fps.update()
|
||||
return detections
|
@ -34,7 +34,6 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'tracked_objects': {},
|
||||
'current_frame_time': None,
|
||||
'current_frame': np.zeros((720,1280,3), np.uint8),
|
||||
'object_id': None
|
||||
})
|
||||
@ -47,9 +46,6 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
|
||||
def get_current_frame(self, camera):
|
||||
return self.camera_data[camera]['current_frame']
|
||||
|
||||
def get_current_frame_time(self, camera):
|
||||
return self.camera_data[camera]['current_frame_time']
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
@ -93,7 +89,6 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
# Set the current frame as ready
|
||||
###
|
||||
self.camera_data[camera]['current_frame'] = current_frame
|
||||
self.camera_data[camera]['current_frame_time'] = frame_time
|
||||
|
||||
# store the object id, so you can delete it at the next loop
|
||||
previous_object_id = self.camera_data[camera]['object_id']
|
||||
|
@ -114,7 +114,7 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
|
||||
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
|
||||
# Merge the ffmpeg config with the global config
|
||||
@ -172,7 +172,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
mask[:] = 255
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||
object_detector = RemoteObjectDetector('/labelmap.txt', detect_lock, detect_ready, frame_ready)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
||||
|
||||
object_tracker = ObjectTracker(10)
|
||||
|
||||
@ -196,8 +196,8 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
rc = ffmpeg_process.poll()
|
||||
if rc is not None:
|
||||
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
|
||||
time.sleep(10)
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
|
||||
time.sleep(10)
|
||||
else:
|
||||
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
|
||||
continue
|
||||
|
Loading…
Reference in New Issue
Block a user