mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	crop the frame and calculate the coordinates in the subprocess and add labels to the image
This commit is contained in:
		
							parent
							
								
									11af9bb953
								
							
						
					
					
						commit
						b91c24bf8f
					
				@ -23,9 +23,9 @@ PATH_TO_LABELS = '/label_map.pbtext'
 | 
			
		||||
# TODO: make dynamic?
 | 
			
		||||
NUM_CLASSES = 90
 | 
			
		||||
 | 
			
		||||
REGION_SIZE = 700
 | 
			
		||||
REGION_X_OFFSET = 950
 | 
			
		||||
REGION_Y_OFFSET = 380
 | 
			
		||||
REGION_SIZE = 300
 | 
			
		||||
REGION_X_OFFSET = 1250
 | 
			
		||||
REGION_Y_OFFSET = 180
 | 
			
		||||
 | 
			
		||||
# Loading label map
 | 
			
		||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
 | 
			
		||||
@ -33,7 +33,7 @@ categories = label_map_util.convert_label_map_to_categories(label_map, max_num_c
 | 
			
		||||
                                                            use_display_name=True)
 | 
			
		||||
category_index = label_map_util.create_category_index(categories)
 | 
			
		||||
 | 
			
		||||
def detect_objects(cropped_frame, sess, detection_graph):
 | 
			
		||||
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
 | 
			
		||||
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
 | 
			
		||||
    image_np_expanded = np.expand_dims(cropped_frame, axis=0)
 | 
			
		||||
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
 | 
			
		||||
@ -57,7 +57,15 @@ def detect_objects(cropped_frame, sess, detection_graph):
 | 
			
		||||
    for index, value in enumerate(classes[0]):
 | 
			
		||||
        score = scores[0, index]
 | 
			
		||||
        if score > 0.1:
 | 
			
		||||
            objects += [value, scores[0, index]] + boxes[0, index].tolist()
 | 
			
		||||
            box = boxes[0, index].tolist()
 | 
			
		||||
            box[0] = (box[0] * region_size) + region_y_offset
 | 
			
		||||
            box[1] = (box[1] * region_size) + region_x_offset
 | 
			
		||||
            box[2] = (box[2] * region_size) + region_y_offset
 | 
			
		||||
            box[3] = (box[3] * region_size) + region_x_offset
 | 
			
		||||
            objects += [value, scores[0, index]] + box
 | 
			
		||||
        # only get the first 10 objects
 | 
			
		||||
        if len(objects) = 60:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    return objects
 | 
			
		||||
 | 
			
		||||
@ -84,16 +92,13 @@ def main():
 | 
			
		||||
    shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
 | 
			
		||||
    # shape current frame so it can be treated as an image
 | 
			
		||||
    frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
			
		||||
    # create shared array for storing the cropped frame image data
 | 
			
		||||
    # TODO: make dynamic
 | 
			
		||||
    shared_cropped_arr = mp.Array(ctypes.c_uint16, REGION_SIZE*REGION_SIZE*3)
 | 
			
		||||
    # create shared array for passing the image data from detect_objects to flask
 | 
			
		||||
    # create shared array for storing 10 detected objects
 | 
			
		||||
    shared_output_arr = mp.Array(ctypes.c_double, 6*10)
 | 
			
		||||
 | 
			
		||||
    capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
 | 
			
		||||
    capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
 | 
			
		||||
    capture_process.daemon = True
 | 
			
		||||
 | 
			
		||||
    detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape))
 | 
			
		||||
    detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape, REGION_SIZE, REGION_X_OFFSET, REGION_Y_OFFSET))
 | 
			
		||||
    detection_process.daemon = True
 | 
			
		||||
 | 
			
		||||
    capture_process.start()
 | 
			
		||||
@ -113,21 +118,33 @@ def main():
 | 
			
		||||
            # max out at 5 FPS
 | 
			
		||||
            time.sleep(0.2)
 | 
			
		||||
            frame = frame_arr.copy()
 | 
			
		||||
            # convert to RGB for drawing
 | 
			
		||||
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 | 
			
		||||
            # draw the bounding boxes on the screen
 | 
			
		||||
            object_index = 0
 | 
			
		||||
            while(object_index < 60 and shared_output_arr[object_index] > 0):
 | 
			
		||||
                object_class = shared_output_arr[object_index]
 | 
			
		||||
                object_name = str(category_index.get(object_class).get('name'))
 | 
			
		||||
                score = shared_output_arr[object_index+1]
 | 
			
		||||
                ymin = int(((shared_output_arr[object_index+2] * REGION_SIZE) + REGION_Y_OFFSET))
 | 
			
		||||
                xmin = int(((shared_output_arr[object_index+3] * REGION_SIZE) + REGION_X_OFFSET))
 | 
			
		||||
                ymax = int(((shared_output_arr[object_index+4] * REGION_SIZE) + REGION_Y_OFFSET))
 | 
			
		||||
                xmax = int(((shared_output_arr[object_index+5] * REGION_SIZE) + REGION_X_OFFSET))
 | 
			
		||||
                cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255,0,0), 2)
 | 
			
		||||
                display_str = '{}: {}%'.format(object_name, int(100*score))
 | 
			
		||||
                ymin = int(shared_output_arr[object_index+2])
 | 
			
		||||
                xmin = int(shared_output_arr[object_index+3])
 | 
			
		||||
                ymax = int(shared_output_arr[object_index+4])
 | 
			
		||||
                xmax = int(shared_output_arr[object_index+5])
 | 
			
		||||
                vis_util.draw_bounding_box_on_image_array(frame,
 | 
			
		||||
                    ymin,
 | 
			
		||||
                    xmin,
 | 
			
		||||
                    ymax,
 | 
			
		||||
                    xmax,
 | 
			
		||||
                    color='red',
 | 
			
		||||
                    thickness=2,
 | 
			
		||||
                    display_str_list=[display_str],
 | 
			
		||||
                    use_normalized_coordinates=False)
 | 
			
		||||
                object_index += 6
 | 
			
		||||
                print(category_index.get(object_class).get('name').encode('utf8'), score)
 | 
			
		||||
            # encode the image into a jpg
 | 
			
		||||
 | 
			
		||||
            cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
 | 
			
		||||
            # convert back to BGR
 | 
			
		||||
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
            # encode the image into a jpg
 | 
			
		||||
            ret, jpg = cv2.imencode('.jpg', frame)
 | 
			
		||||
            yield (b'--frame\r\n'
 | 
			
		||||
                b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
 | 
			
		||||
@ -143,10 +160,9 @@ def tonumpyarray(mp_arr):
 | 
			
		||||
 | 
			
		||||
# fetch the frames as fast a possible, only decoding the frames when the
 | 
			
		||||
# detection_process has consumed the current frame
 | 
			
		||||
def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
 | 
			
		||||
def fetch_frames(shared_arr, shared_frame_time, frame_shape):
 | 
			
		||||
    # convert shared memory array into numpy and shape into image array
 | 
			
		||||
    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
			
		||||
    cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
 | 
			
		||||
 | 
			
		||||
    # start the video capture
 | 
			
		||||
    video = cv2.VideoCapture(RTSP_URL)
 | 
			
		||||
@ -170,8 +186,6 @@ def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape)
 | 
			
		||||
                    # cropped_frame[:] = frame[270:720, 550:1000]
 | 
			
		||||
                    # Position 2
 | 
			
		||||
                    # frame_cropped = frame[270:720, 100:550]
 | 
			
		||||
                    # Car
 | 
			
		||||
                    cropped_frame[:] = frame[REGION_Y_OFFSET:REGION_Y_OFFSET+REGION_SIZE, REGION_X_OFFSET:REGION_X_OFFSET+REGION_SIZE]
 | 
			
		||||
                    arr[:] = frame
 | 
			
		||||
                    # signal to the detection_process by setting the shared_frame_time
 | 
			
		||||
                    shared_frame_time.value = frame_time.timestamp()
 | 
			
		||||
@ -179,10 +193,9 @@ def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape)
 | 
			
		||||
    video.release()
 | 
			
		||||
 | 
			
		||||
# do the actual object detection
 | 
			
		||||
def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
 | 
			
		||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
 | 
			
		||||
    # shape shared input array into frame for processing
 | 
			
		||||
    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
			
		||||
    shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
 | 
			
		||||
 | 
			
		||||
    # Load a (frozen) Tensorflow model into memory before the processing loop
 | 
			
		||||
    detection_graph = tf.Graph()
 | 
			
		||||
@ -222,9 +235,8 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
 | 
			
		||||
            time.sleep(0.01)
 | 
			
		||||
            continue
 | 
			
		||||
        
 | 
			
		||||
        # make a copy of the frame
 | 
			
		||||
        # frame = arr.copy()
 | 
			
		||||
        cropped_frame = shared_cropped_frame.copy()
 | 
			
		||||
        # make a copy of the cropped frame
 | 
			
		||||
        cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
 | 
			
		||||
        frame_time = shared_frame_time.value
 | 
			
		||||
        # signal that the frame has been used so a new one will be ready
 | 
			
		||||
        shared_frame_time.value = 0.0
 | 
			
		||||
@ -232,7 +244,7 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
 | 
			
		||||
        # convert to RGB
 | 
			
		||||
        cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
 | 
			
		||||
        # do the object detection
 | 
			
		||||
        objects = detect_objects(cropped_frame_rgb, sess, detection_graph)
 | 
			
		||||
        objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
 | 
			
		||||
        # copy the detected objects to the output array, filling the array when needed
 | 
			
		||||
        shared_output_arr[:] = objects + [0.0] * (60-len(objects))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user