mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	use new pycoral libraries
This commit is contained in:
		
							parent
							
								
									4818c08fe2
								
							
						
					
					
						commit
						dc759a3e56
					
				| @ -26,7 +26,7 @@ RUN apt-get -qq update \ | ||||
|     && APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \ | ||||
|     && echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \ | ||||
|     && echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \ | ||||
|     && apt-get -qq update && apt-get -qq install --no-install-recommends -y libedgetpu1-max python3-tflite-runtime \ | ||||
|     && apt-get -qq update && apt-get -qq install --no-install-recommends -y libedgetpu1-max python3-tflite-runtime python3-pycoral \ | ||||
|     && rm -rf /var/lib/apt/lists/* /wheels \ | ||||
|     && (apt-get autoremove -y; apt-get autoclean -y) | ||||
| 
 | ||||
|  | ||||
| @ -9,6 +9,7 @@ from abc import ABC, abstractmethod | ||||
| from typing import Dict | ||||
| 
 | ||||
| import numpy as np | ||||
| from pycoral.adapters import detect | ||||
| import tflite_runtime.interpreter as tflite | ||||
| from setproctitle import setproctitle | ||||
| from tflite_runtime.interpreter import load_delegate | ||||
| @ -97,25 +98,20 @@ class LocalObjectDetector(ObjectDetector): | ||||
|     def detect_raw(self, tensor_input): | ||||
|         self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) | ||||
|         self.interpreter.invoke() | ||||
|         boxes = np.squeeze( | ||||
|             self.interpreter.get_tensor(self.tensor_output_details[0]["index"]) | ||||
|         ) | ||||
|         label_codes = np.squeeze( | ||||
|             self.interpreter.get_tensor(self.tensor_output_details[1]["index"]) | ||||
|         ) | ||||
|         scores = np.squeeze( | ||||
|             self.interpreter.get_tensor(self.tensor_output_details[2]["index"]) | ||||
|         ) | ||||
| 
 | ||||
|         objects = detect.get_objects(self.interpreter, 0.4) | ||||
| 
 | ||||
|         detections = np.zeros((20, 6), np.float32) | ||||
|         for i, score in enumerate(scores): | ||||
|         for i, obj in enumerate(objects): | ||||
|             if i == 20: | ||||
|                 break | ||||
|             detections[i] = [ | ||||
|                 label_codes[i], | ||||
|                 score, | ||||
|                 boxes[i][0], | ||||
|                 boxes[i][1], | ||||
|                 boxes[i][2], | ||||
|                 boxes[i][3], | ||||
|                 obj.id, | ||||
|                 obj.score, | ||||
|                 obj.bbox.ymin, | ||||
|                 obj.bbox.xmin, | ||||
|                 obj.bbox.ymax, | ||||
|                 obj.bbox.xmax, | ||||
|             ] | ||||
| 
 | ||||
|         return detections | ||||
|  | ||||
| @ -404,10 +404,10 @@ def detect( | ||||
|     for d in region_detections: | ||||
|         box = d[2] | ||||
|         size = region[2] - region[0] | ||||
|         x_min = int((box[1] * size) + region[0]) | ||||
|         y_min = int((box[0] * size) + region[1]) | ||||
|         x_max = int((box[3] * size) + region[0]) | ||||
|         y_max = int((box[2] * size) + region[1]) | ||||
|         x_min = int((box[1]) + region[0]) | ||||
|         y_min = int((box[0]) + region[1]) | ||||
|         x_max = int((box[3]) + region[0]) | ||||
|         y_max = int((box[2]) + region[1]) | ||||
|         det = ( | ||||
|             d[0], | ||||
|             d[1], | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user