mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-08-04 13:47:37 +02:00
* Ignore numpy get limits warning * Add function wrapper to redirect stdout and stderr to logpipe * Save stderr too * Add more to catch * run logpipe * Use other logging redirect class * Use other logging redirect class * add decorator for redirecting c/c++ level output to logger * fix typing --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
188 lines
6.6 KiB
Python
188 lines
6.6 KiB
Python
"""Facenet Embeddings."""
|
|
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from frigate.const import MODEL_CACHE_DIR
|
|
from frigate.log import redirect_output_to_logger
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
from .base_embedding import BaseEmbedding
|
|
from .runner import ONNXModelRunner
|
|
|
|
try:
|
|
from tflite_runtime.interpreter import Interpreter
|
|
except ModuleNotFoundError:
|
|
from tensorflow.lite.python.interpreter import Interpreter
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
ARCFACE_INPUT_SIZE = 112
|
|
FACENET_INPUT_SIZE = 160
|
|
|
|
|
|
class FaceNetEmbedding(BaseEmbedding):
|
|
def __init__(self):
|
|
super().__init__(
|
|
model_name="facedet",
|
|
model_file="facenet.tflite",
|
|
download_urls={
|
|
"facenet.tflite": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facenet.tflite",
|
|
},
|
|
)
|
|
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
|
self.tokenizer = None
|
|
self.feature_extractor = None
|
|
self.runner = None
|
|
files_names = list(self.download_urls.keys())
|
|
|
|
if not all(
|
|
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
|
|
):
|
|
logger.debug(f"starting model download for {self.model_name}")
|
|
self.downloader = ModelDownloader(
|
|
model_name=self.model_name,
|
|
download_path=self.download_path,
|
|
file_names=files_names,
|
|
download_func=self._download_model,
|
|
)
|
|
self.downloader.ensure_model_files()
|
|
else:
|
|
self.downloader = None
|
|
self._load_model_and_utils()
|
|
logger.debug(f"models are already downloaded for {self.model_name}")
|
|
|
|
@redirect_output_to_logger(logger, logging.DEBUG)
|
|
def _load_model_and_utils(self):
|
|
if self.runner is None:
|
|
if self.downloader:
|
|
self.downloader.wait_for_download()
|
|
|
|
self.runner = Interpreter(
|
|
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
|
|
num_threads=2,
|
|
)
|
|
self.runner.allocate_tensors()
|
|
self.tensor_input_details = self.runner.get_input_details()
|
|
self.tensor_output_details = self.runner.get_output_details()
|
|
|
|
def _preprocess_inputs(self, raw_inputs):
|
|
pil = self._process_image(raw_inputs[0])
|
|
|
|
# handle images larger than input size
|
|
width, height = pil.size
|
|
if width != FACENET_INPUT_SIZE or height != FACENET_INPUT_SIZE:
|
|
if width > height:
|
|
new_height = int(((height / width) * FACENET_INPUT_SIZE) // 4 * 4)
|
|
pil = pil.resize((FACENET_INPUT_SIZE, new_height))
|
|
else:
|
|
new_width = int(((width / height) * FACENET_INPUT_SIZE) // 4 * 4)
|
|
pil = pil.resize((new_width, FACENET_INPUT_SIZE))
|
|
|
|
og = np.array(pil).astype(np.float32)
|
|
|
|
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
|
|
og_h, og_w, channels = og.shape
|
|
frame = np.zeros(
|
|
(FACENET_INPUT_SIZE, FACENET_INPUT_SIZE, channels), dtype=np.float32
|
|
)
|
|
|
|
# compute center offset
|
|
x_center = (FACENET_INPUT_SIZE - og_w) // 2
|
|
y_center = (FACENET_INPUT_SIZE - og_h) // 2
|
|
|
|
# copy img image into center of result image
|
|
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
|
|
|
|
# run facenet normalization
|
|
frame = (frame / 127.5) - 1.0
|
|
|
|
frame = np.expand_dims(frame, axis=0)
|
|
return frame
|
|
|
|
def __call__(self, inputs):
|
|
self._load_model_and_utils()
|
|
processed = self._preprocess_inputs(inputs)
|
|
self.runner.set_tensor(self.tensor_input_details[0]["index"], processed)
|
|
self.runner.invoke()
|
|
return self.runner.get_tensor(self.tensor_output_details[0]["index"])
|
|
|
|
|
|
class ArcfaceEmbedding(BaseEmbedding):
|
|
def __init__(self):
|
|
super().__init__(
|
|
model_name="facedet",
|
|
model_file="arcface.onnx",
|
|
download_urls={
|
|
"arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
|
|
},
|
|
)
|
|
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
|
self.tokenizer = None
|
|
self.feature_extractor = None
|
|
self.runner = None
|
|
files_names = list(self.download_urls.keys())
|
|
|
|
if not all(
|
|
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
|
|
):
|
|
logger.debug(f"starting model download for {self.model_name}")
|
|
self.downloader = ModelDownloader(
|
|
model_name=self.model_name,
|
|
download_path=self.download_path,
|
|
file_names=files_names,
|
|
download_func=self._download_model,
|
|
)
|
|
self.downloader.ensure_model_files()
|
|
else:
|
|
self.downloader = None
|
|
self._load_model_and_utils()
|
|
logger.debug(f"models are already downloaded for {self.model_name}")
|
|
|
|
def _load_model_and_utils(self):
|
|
if self.runner is None:
|
|
if self.downloader:
|
|
self.downloader.wait_for_download()
|
|
|
|
self.runner = ONNXModelRunner(
|
|
os.path.join(self.download_path, self.model_file),
|
|
"GPU",
|
|
)
|
|
|
|
def _preprocess_inputs(self, raw_inputs):
|
|
pil = self._process_image(raw_inputs[0])
|
|
|
|
# handle images larger than input size
|
|
width, height = pil.size
|
|
if width != ARCFACE_INPUT_SIZE or height != ARCFACE_INPUT_SIZE:
|
|
if width > height:
|
|
new_height = int(((height / width) * ARCFACE_INPUT_SIZE) // 4 * 4)
|
|
pil = pil.resize((ARCFACE_INPUT_SIZE, new_height))
|
|
else:
|
|
new_width = int(((width / height) * ARCFACE_INPUT_SIZE) // 4 * 4)
|
|
pil = pil.resize((new_width, ARCFACE_INPUT_SIZE))
|
|
|
|
og = np.array(pil).astype(np.float32)
|
|
|
|
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
|
|
og_h, og_w, channels = og.shape
|
|
frame = np.zeros(
|
|
(ARCFACE_INPUT_SIZE, ARCFACE_INPUT_SIZE, channels), dtype=np.float32
|
|
)
|
|
|
|
# compute center offset
|
|
x_center = (ARCFACE_INPUT_SIZE - og_w) // 2
|
|
y_center = (ARCFACE_INPUT_SIZE - og_h) // 2
|
|
|
|
# copy img image into center of result image
|
|
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
|
|
|
|
# run arcface normalization
|
|
frame = (frame / 127.5) - 1.0
|
|
|
|
frame = np.transpose(frame, (2, 0, 1))
|
|
frame = np.expand_dims(frame, axis=0)
|
|
return [{"data": frame}]
|