blakeblackshear.frigate/frigate/embeddings/onnx/face_embedding.py
Nicolas Mowen add68b8860
Improve logging (#18867)
* Ignore numpy get limits warning

* Add function wrapper to redirect stdout and stderr to logpipe

* Save stderr too

* Add more to catch

* run logpipe

* Use other logging redirect class

* Use other logging redirect class

* add decorator for redirecting c/c++ level output to logger

* fix typing

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-25 07:24:45 -06:00

188 lines
6.6 KiB
Python

"""Facenet Embeddings."""
import logging
import os
import numpy as np
from frigate.const import MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.util.downloader import ModelDownloader
from .base_embedding import BaseEmbedding
from .runner import ONNXModelRunner
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
logger = logging.getLogger(__name__)
ARCFACE_INPUT_SIZE = 112
FACENET_INPUT_SIZE = 160
class FaceNetEmbedding(BaseEmbedding):
def __init__(self):
super().__init__(
model_name="facedet",
model_file="facenet.tflite",
download_urls={
"facenet.tflite": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facenet.tflite",
},
)
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
self.tokenizer = None
self.feature_extractor = None
self.runner = None
files_names = list(self.download_urls.keys())
if not all(
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
):
logger.debug(f"starting model download for {self.model_name}")
self.downloader = ModelDownloader(
model_name=self.model_name,
download_path=self.download_path,
file_names=files_names,
download_func=self._download_model,
)
self.downloader.ensure_model_files()
else:
self.downloader = None
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
@redirect_output_to_logger(logger, logging.DEBUG)
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
self.runner = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
num_threads=2,
)
self.runner.allocate_tensors()
self.tensor_input_details = self.runner.get_input_details()
self.tensor_output_details = self.runner.get_output_details()
def _preprocess_inputs(self, raw_inputs):
pil = self._process_image(raw_inputs[0])
# handle images larger than input size
width, height = pil.size
if width != FACENET_INPUT_SIZE or height != FACENET_INPUT_SIZE:
if width > height:
new_height = int(((height / width) * FACENET_INPUT_SIZE) // 4 * 4)
pil = pil.resize((FACENET_INPUT_SIZE, new_height))
else:
new_width = int(((width / height) * FACENET_INPUT_SIZE) // 4 * 4)
pil = pil.resize((new_width, FACENET_INPUT_SIZE))
og = np.array(pil).astype(np.float32)
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
og_h, og_w, channels = og.shape
frame = np.zeros(
(FACENET_INPUT_SIZE, FACENET_INPUT_SIZE, channels), dtype=np.float32
)
# compute center offset
x_center = (FACENET_INPUT_SIZE - og_w) // 2
y_center = (FACENET_INPUT_SIZE - og_h) // 2
# copy img image into center of result image
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
# run facenet normalization
frame = (frame / 127.5) - 1.0
frame = np.expand_dims(frame, axis=0)
return frame
def __call__(self, inputs):
self._load_model_and_utils()
processed = self._preprocess_inputs(inputs)
self.runner.set_tensor(self.tensor_input_details[0]["index"], processed)
self.runner.invoke()
return self.runner.get_tensor(self.tensor_output_details[0]["index"])
class ArcfaceEmbedding(BaseEmbedding):
def __init__(self):
super().__init__(
model_name="facedet",
model_file="arcface.onnx",
download_urls={
"arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
},
)
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
self.tokenizer = None
self.feature_extractor = None
self.runner = None
files_names = list(self.download_urls.keys())
if not all(
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
):
logger.debug(f"starting model download for {self.model_name}")
self.downloader = ModelDownloader(
model_name=self.model_name,
download_path=self.download_path,
file_names=files_names,
download_func=self._download_model,
)
self.downloader.ensure_model_files()
else:
self.downloader = None
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
self.runner = ONNXModelRunner(
os.path.join(self.download_path, self.model_file),
"GPU",
)
def _preprocess_inputs(self, raw_inputs):
pil = self._process_image(raw_inputs[0])
# handle images larger than input size
width, height = pil.size
if width != ARCFACE_INPUT_SIZE or height != ARCFACE_INPUT_SIZE:
if width > height:
new_height = int(((height / width) * ARCFACE_INPUT_SIZE) // 4 * 4)
pil = pil.resize((ARCFACE_INPUT_SIZE, new_height))
else:
new_width = int(((width / height) * ARCFACE_INPUT_SIZE) // 4 * 4)
pil = pil.resize((new_width, ARCFACE_INPUT_SIZE))
og = np.array(pil).astype(np.float32)
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
og_h, og_w, channels = og.shape
frame = np.zeros(
(ARCFACE_INPUT_SIZE, ARCFACE_INPUT_SIZE, channels), dtype=np.float32
)
# compute center offset
x_center = (ARCFACE_INPUT_SIZE - og_w) // 2
y_center = (ARCFACE_INPUT_SIZE - og_h) // 2
# copy img image into center of result image
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
# run arcface normalization
frame = (frame / 127.5) - 1.0
frame = np.transpose(frame, (2, 0, 1))
frame = np.expand_dims(frame, axis=0)
return [{"data": frame}]