mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
NVR with realtime local object detection for IP cameras
aicameragoogle-coralhome-assistanthome-automationhomeautomationmqttnvrobject-detectionrealtimertsptensorflow
3f05f74ecb
* Initial WIP dockerfile and scripts to add tensorrt support * Add tensorRT detector * WIP attempt to install TensorRT 8.5 * Updates to detector for cuda python library * TensorRT Cuda library rework WIP Does not run * Fixes from rebase to detector factory * Fix parsing output memory pointer * Handle TensorRT logs with the python logger * Use non-async interface and convert input data to float32. Detection runs without error. * Make TensorRT a separate build from the base Frigate image. * Add script and documentation for generating TRT Models * Add support for TensorRT devcontainer * Add labelmap to trt model script and docs. Cleanup of old scripts. * Update detect to normalize input tensor using model input type * Add config for selecting GPU. Fix Async inference. Update documentation. * Update some CUDA libraries to clean up version warning * Add CI stage to build TensorRT tag * Add note in docs for image tag and model support |
||
---|---|---|
.devcontainer | ||
.github | ||
.vscode | ||
config | ||
docker | ||
docs | ||
frigate | ||
migrations | ||
web | ||
.dockerignore | ||
.gitignore | ||
.pylintrc | ||
benchmark.py | ||
docker-compose.yml | ||
Dockerfile | ||
labelmap.txt | ||
LICENSE | ||
Makefile | ||
process_clip.py | ||
README.md | ||
requirements-dev.txt | ||
requirements-ov.txt | ||
requirements-tensorrt.txt | ||
requirements-wheels.txt | ||
requirements.txt |
Frigate - NVR With Realtime Object Detection for IP Cameras
A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with Home Assistant via a custom component
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- Records video with retention settings based on detected objects
- 24/7 recording
- Re-streaming via RTMP to reduce the number of connections to your camera
Documentation
View the documentation at https://docs.frigate.video
Donations
If you would like to make a donation to support development, please use Github Sponsors.
Screenshots
Integration into Home Assistant
Also comes with a builtin UI: