NVR with realtime local object detection for IP cameras
Go to file
2024-07-15 15:52:34 -06:00
.cspell
.devcontainer Nginx config tweaks (#12174) 2024-06-29 07:18:40 -06:00
.github Update template to include all detector types (#11981) 2024-06-15 15:26:09 -05:00
.vscode
config
docker strip whitespaces when loading secrets (#12393) 2024-07-12 07:36:15 -06:00
docs Update docs for clarity on review items (#12441) 2024-07-14 11:12:26 -06:00
frigate No need to check for h264 onvif profile (#12444) 2024-07-14 13:29:49 -05:00
migrations
notebooks
web Check if camera is active before disabling liveReady (#12461) 2024-07-15 15:52:34 -06:00
.dockerignore
.gitignore
.pylintrc
audio-labelmap.txt
benchmark_motion.py
benchmark.py
CODEOWNERS
cspell.json
docker-compose.yml
labelmap.txt
LICENSE
Makefile
netlify.toml
process_clip.py
pyproject.toml
README.md

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTSP to reduce the number of connections to your camera
  • WebRTC & MSE support for low-latency live view

Documentation

View the documentation at https://docs.frigate.video

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Live dashboard

Live dashboard

Streamlined review workflow

Streamlined review workflow

Multi-camera scrubbing

Multi-camera scrubbing

Built-in mask and zone editor

Multi-camera scrubbing