NVR with realtime local object detection for IP cameras
Go to file
Nicolas Mowen 5ff476c6f9
Configurable ffmpeg (#13722)
* Install multiple ffmpeg versions and add config to make it configurable

* Update docs

* Run ffprobe too

* Cleanup

* Apply config to go2rtc as well

* Fix ffmpeg bin

* Docs

* Restore path

* Cleanup env var

* Fix ffmpeg path for encoding

* Fix export

* Formatting
2024-09-13 15:14:51 -05:00
.cspell
.devcontainer Configurable ffmpeg (#13722) 2024-09-13 15:14:51 -05:00
.github Hailo amd64 support (#12820) 2024-08-29 20:19:50 -06:00
.vscode
config Improve the devcontainer experience (#3492) 2022-11-20 07:34:12 -06:00
docker Configurable ffmpeg (#13722) 2024-09-13 15:14:51 -05:00
docs Configurable ffmpeg (#13722) 2024-09-13 15:14:51 -05:00
frigate Configurable ffmpeg (#13722) 2024-09-13 15:14:51 -05:00
migrations Implement support for notifications (#12523) 2024-08-29 20:19:50 -06:00
notebooks Adds support for YOLO-NAS in OpenVino (#11645) 2024-06-07 05:52:08 -06:00
web Fix filter args (#13718) 2024-09-13 08:25:29 -05:00
.dockerignore
.gitignore upgrade to latest openvino version (#11563) 2024-05-27 14:49:35 -06:00
.pylintrc use fstr log style 2021-02-25 07:01:59 -06:00
audio-labelmap.txt
benchmark_motion.py
benchmark.py
CODEOWNERS
cspell.json
docker-compose.yml
labelmap.txt
LICENSE switch to MIT license 2020-07-26 12:07:47 -05:00
Makefile Update version 2024-08-29 20:19:50 -06:00
netlify.toml
package-lock.json Implement support for notifications (#12523) 2024-08-29 20:19:50 -06:00
process_clip.py
pyproject.toml
README.md

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTSP to reduce the number of connections to your camera
  • WebRTC & MSE support for low-latency live view

Documentation

View the documentation at https://docs.frigate.video

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Live dashboard

Live dashboard

Streamlined review workflow

Streamlined review workflow

Multi-camera scrubbing

Multi-camera scrubbing

Built-in mask and zone editor

Multi-camera scrubbing