NVR with realtime local object detection for IP cameras
Go to file
2024-09-13 09:55:42 -05:00
.cspell cspell fixes (#11447) 2024-05-20 07:37:56 -06:00
.devcontainer Nginx config tweaks (#12174) 2024-06-29 07:18:40 -06:00
.github Hailo amd64 support (#12820) 2024-08-29 20:19:50 -06:00
.vscode
config
docker Update ffmpeg (#13720) 2024-09-13 09:55:42 -05:00
docs Use tracked object instead of event language in docs and UI (#13685) 2024-09-11 18:53:58 -06:00
frigate Ensure detections are not immediately deleted (#13683) 2024-09-11 15:46:24 -05:00
migrations Implement support for notifications (#12523) 2024-08-29 20:19:50 -06:00
notebooks Adds support for YOLO-NAS in OpenVino (#11645) 2024-06-07 05:52:08 -06:00
web Fix filter args (#13718) 2024-09-13 08:25:29 -05:00
.dockerignore
.gitignore upgrade to latest openvino version (#11563) 2024-05-27 14:49:35 -06:00
.pylintrc
audio-labelmap.txt
benchmark_motion.py
benchmark.py Add isort and ruff linter (#6575) 2023-05-29 05:31:17 -05:00
CODEOWNERS Initial support for Hailo-8L (#12431) 2024-08-29 20:19:50 -06:00
cspell.json cspell fixes (#11447) 2024-05-20 07:37:56 -06:00
docker-compose.yml
labelmap.txt
LICENSE
Makefile Update version 2024-08-29 20:19:50 -06:00
netlify.toml
package-lock.json Implement support for notifications (#12523) 2024-08-29 20:19:50 -06:00
process_clip.py
pyproject.toml
README.md update images in readme 2024-06-08 15:37:16 -05:00

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTSP to reduce the number of connections to your camera
  • WebRTC & MSE support for low-latency live view

Documentation

View the documentation at https://docs.frigate.video

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Live dashboard

Live dashboard

Streamlined review workflow

Streamlined review workflow

Multi-camera scrubbing

Multi-camera scrubbing

Built-in mask and zone editor

Multi-camera scrubbing