blakeblackshear.frigate/frigate/embeddings/onnx/facenet.py
Nicolas Mowen b18d1fb970
Refactor face recognition (#17368)
* Refactor face recognition to allow for running lbph or embedding

* Cleanup

* Use weighted average for faces

* Set correct url

* Cleanup

* Update docs

* Update docs

* Use scipy trimmed mean

* Normalize

* Handle color and gray landmark detection

* Upgrade to new arcface model

* Implement sigmoid function

* Rename

* Rename to arcface

* Fix

* Add face recognition model size to ui config

* Update toast
2025-03-25 19:59:03 -05:00

99 lines
3.2 KiB
Python

"""Facenet Embeddings."""
import logging
import os
import numpy as np
from frigate.const import MODEL_CACHE_DIR
from frigate.util.downloader import ModelDownloader
from .base_embedding import BaseEmbedding
from .runner import ONNXModelRunner
logger = logging.getLogger(__name__)
FACE_EMBEDDING_SIZE = 112
class ArcfaceEmbedding(BaseEmbedding):
def __init__(
self,
device: str = "AUTO",
):
super().__init__(
model_name="facedet",
model_file="arcface.onnx",
download_urls={
"arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
},
)
self.device = device
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
self.tokenizer = None
self.feature_extractor = None
self.runner = None
files_names = list(self.download_urls.keys())
if not all(
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
):
logger.debug(f"starting model download for {self.model_name}")
self.downloader = ModelDownloader(
model_name=self.model_name,
download_path=self.download_path,
file_names=files_names,
download_func=self._download_model,
)
self.downloader.ensure_model_files()
else:
self.downloader = None
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
self.runner = ONNXModelRunner(
os.path.join(self.download_path, self.model_file),
self.device,
)
def _preprocess_inputs(self, raw_inputs):
pil = self._process_image(raw_inputs[0])
# handle images larger than input size
width, height = pil.size
if width != FACE_EMBEDDING_SIZE or height != FACE_EMBEDDING_SIZE:
if width > height:
new_height = int(((height / width) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((FACE_EMBEDDING_SIZE, new_height))
else:
new_width = int(((width / height) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((new_width, FACE_EMBEDDING_SIZE))
og = np.array(pil).astype(np.float32)
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
og_h, og_w, channels = og.shape
frame = np.zeros(
(FACE_EMBEDDING_SIZE, FACE_EMBEDDING_SIZE, channels), dtype=np.float32
)
# compute center offset
x_center = (FACE_EMBEDDING_SIZE - og_w) // 2
y_center = (FACE_EMBEDDING_SIZE - og_h) // 2
# copy img image into center of result image
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
# run arcface normalization
normalized_image = frame.astype(np.float32) / 255.0
frame = (normalized_image - 0.5) / 0.5
frame = np.transpose(frame, (2, 0, 1))
frame = np.expand_dims(frame, axis=0)
return [{"data": frame}]