blakeblackshear.frigate/docs/docs/configuration/detectors.md
yeahme49 c2b13fdbdf
Add new models to docs (#5533)
Yolov7-640, Yolov7-320, Yolov7x-640 and Yolov7x-320 models got added to the download_yolo.sh script that gets used as part of generating tensorrt models so they can now be generated
2023-02-19 07:41:55 -06:00

259 lines
11 KiB
Markdown

---
id: detectors
title: Detectors
---
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
## CPU Detector (not recommended)
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
```yaml
detectors:
cpu1:
type: cpu
num_threads: 3
model:
path: "/custom_model.tflite"
cpu2:
type: cpu
num_threads: 3
```
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
## Edge-TPU Detector
The EdgeTPU detector type runs a TensorFlow Lite model utilizing the Google Coral delegate for hardware acceleration. To configure an EdgeTPU detector, set the `"type"` attribute to `"edgetpu"`.
The EdgeTPU device can be specified using the `"device"` attribute according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api). If not set, the delegate will use the first device it finds.
A TensorFlow Lite model is provided in the container at `/edgetpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
### Single USB Coral
```yaml
detectors:
coral:
type: edgetpu
device: usb
model:
path: "/custom_model.tflite"
```
### Multiple USB Corals
```yaml
detectors:
coral1:
type: edgetpu
device: usb:0
coral2:
type: edgetpu
device: usb:1
```
### Native Coral (Dev Board)
_warning: may have [compatibility issues](https://github.com/blakeblackshear/frigate/issues/1706) after `v0.9.x`_
```yaml
detectors:
coral:
type: edgetpu
device: ""
```
### Multiple PCIE/M.2 Corals
```yaml
detectors:
coral1:
type: edgetpu
device: pci:0
coral2:
type: edgetpu
device: pci:1
```
### Mixing Corals
```yaml
detectors:
coral_usb:
type: edgetpu
device: usb
coral_pci:
type: edgetpu
device: pci
```
## OpenVINO Detector
The OpenVINO detector type runs an OpenVINO IR model on Intel CPU, GPU and VPU hardware. To configure an OpenVINO detector, set the `"type"` attribute to `"openvino"`.
The OpenVINO device to be used is specified using the `"device"` attribute according to the naming conventions in the [Device Documentation](https://docs.openvino.ai/latest/openvino_docs_OV_UG_Working_with_devices.html). Other supported devices could be `AUTO`, `CPU`, `GPU`, `MYRIAD`, etc. If not specified, the default OpenVINO device will be selected by the `AUTO` plugin.
OpenVINO is supported on 6th Gen Intel platforms (Skylake) and newer. A supported Intel platform is required to use the `GPU` device with OpenVINO. The `MYRIAD` device may be run on any platform, including Arm devices. For detailed system requirements, see [OpenVINO System Requirements](https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/system-requirements.html)
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model. Use the model configuration shown below when using the OpenVINO detector with the default model.
```yaml
detectors:
ov:
type: openvino
device: AUTO
model:
path: /openvino-model/ssdlite_mobilenet_v2.xml
model:
width: 300
height: 300
input_tensor: nhwc
input_pixel_format: bgr
labelmap_path: /openvino-model/coco_91cl_bkgr.txt
```
This detector also supports some YOLO variants: YOLOX, YOLOv5, and YOLOv8 specifically. Other YOLO variants are not officially supported/tested. Frigate does not come with any yolo models preloaded, so you will need to supply your own models. This detector has been verified to work with the [yolox_tiny](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolox-tiny) model from Intel's Open Model Zoo. You can follow [these instructions](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolox-tiny#download-a-model-and-convert-it-into-openvino-ir-format) to retrieve the OpenVINO-compatible `yolox_tiny` model. Make sure that the model input dimensions match the `width` and `height` parameters, and `model_type` is set accordingly. See [Full Configuration Reference](/configuration/index.md#full-configuration-reference) for a list of possible `model_type` options. Below is an example of how `yolox_tiny` can be used in Frigate:
```yaml
detectors:
ov:
type: openvino
device: AUTO
model:
path: /path/to/yolox_tiny.xml
model:
width: 416
height: 416
input_tensor: nchw
input_pixel_format: bgr
model_type: yolox
labelmap_path: /path/to/coco_80cl.txt
```
### Intel NCS2 VPU and Myriad X Setup
Intel produces a neural net inference accelleration chip called Myriad X. This chip was sold in their Neural Compute Stick 2 (NCS2) which has been discontinued. If intending to use the MYRIAD device for accelleration, additional setup is required to pass through the USB device. The host needs a udev rule installed to handle the NCS2 device.
```bash
sudo usermod -a -G users "$(whoami)"
cat <<EOF > 97-myriad-usbboot.rules
SUBSYSTEM=="usb", ATTRS{idProduct}=="2485", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
SUBSYSTEM=="usb", ATTRS{idProduct}=="f63b", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
EOF
sudo cp 97-myriad-usbboot.rules /etc/udev/rules.d/
sudo udevadm control --reload-rules
sudo udevadm trigger
```
Additionally, the Frigate docker container needs to run with the following configuration:
```bash
--device-cgroup-rule='c 189:\* rmw' -v /dev/bus/usb:/dev/bus/usb
```
or in your compose file:
```yml
device_cgroup_rules:
- "c 189:* rmw"
volumes:
- /dev/bus/usb:/dev/bus/usb
```
## NVidia TensorRT Detector
NVidia GPUs may be used for object detection using the TensorRT libraries. Due to the size of the additional libraries, this detector is only provided in images with the `-tensorrt` tag suffix. This detector is designed to work with Yolo models for object detection.
### Minimum Hardware Support
The TensorRT detector uses the 11.x series of CUDA libraries which have minor version compatibility. The minimum driver version on the host system must be `>=450.80.02`. Also the GPU must support a Compute Capability of `5.0` or greater. This generally correlates to a Maxwell-era GPU or newer, check the NVIDIA GPU Compute Capability table linked below.
> **TODO:** NVidia claims support on compute 3.5 and 3.7, but marks it as deprecated. This would have some, but not all, Kepler GPUs as possibly working. This needs testing before making any claims of support.
To use the TensorRT detector, make sure your host system has the [nvidia-container-runtime](https://docs.docker.com/config/containers/resource_constraints/#access-an-nvidia-gpu) installed to pass through the GPU to the container and the host system has a compatible driver installed for your GPU.
There are improved capabilities in newer GPU architectures that TensorRT can benefit from, such as INT8 operations and Tensor cores. The features compatible with your hardware will be optimized when the model is converted to a trt file. Currently the script provided for generating the model provides a switch to enable/disable FP16 operations. If you wish to use newer features such as INT8 optimization, more work is required.
#### Compatibility References:
[NVIDIA TensorRT Support Matrix](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-841/support-matrix/index.html)
[NVIDIA CUDA Compatibility](https://docs.nvidia.com/deploy/cuda-compatibility/index.html)
[NVIDIA GPU Compute Capability](https://developer.nvidia.com/cuda-gpus)
### Generate Models
The model used for TensorRT must be preprocessed on the same hardware platform that they will run on. This means that each user must run additional setup to generate a model file for the TensorRT library. A script is provided that will build several common models.
To generate model files, create a new folder to save the models, download the script, and launch a docker container that will run the script.
```bash
mkdir trt-models
wget https://raw.githubusercontent.com/blakeblackshear/frigate/docker/tensorrt_models.sh
chmod +x tensorrt_models.sh
docker run --gpus=all --rm -it -v `pwd`/trt-models:/tensorrt_models -v `pwd`/tensorrt_models.sh:/tensorrt_models.sh nvcr.io/nvidia/tensorrt:22.07-py3 /tensorrt_models.sh
```
The `trt-models` folder can then be mapped into your Frigate container as `trt-models` and the models referenced from the config.
If your GPU does not support FP16 operations, you can pass the environment variable `-e USE_FP16=False` to the `docker run` command to disable it.
Specific models can be selected by passing an environment variable to the `docker run` command. Use the form `-e YOLO_MODELS=yolov4-416,yolov4-tiny-416` to select one or more model names. The models available are shown below.
```
yolov3-288
yolov3-416
yolov3-608
yolov3-spp-288
yolov3-spp-416
yolov3-spp-608
yolov3-tiny-288
yolov3-tiny-416
yolov4-288
yolov4-416
yolov4-608
yolov4-csp-256
yolov4-csp-512
yolov4-p5-448
yolov4-p5-896
yolov4-tiny-288
yolov4-tiny-416
yolov4x-mish-320
yolov4x-mish-640
yolov7-tiny-288
yolov7-tiny-416
yolov7-640
yolov7-320
yolov7x-640
yolov7x-320
```
### Configuration Parameters
The TensorRT detector can be selected by specifying `tensorrt` as the model type. The GPU will need to be passed through to the docker container using the same methods described in the [Hardware Acceleration](hardware_acceleration.md#nvidia-gpu) section. If you pass through multiple GPUs, you can select which GPU is used for a detector with the `device` configuration parameter. The `device` parameter is an integer value of the GPU index, as shown by `nvidia-smi` within the container.
The TensorRT detector uses `.trt` model files that are located in `/trt-models/` by default. These model file path and dimensions used will depend on which model you have generated.
```yaml
detectors:
tensorrt:
type: tensorrt
device: 0 #This is the default, select the first GPU
model:
path: /trt-models/yolov7-tiny-416.trt
input_tensor: nchw
input_pixel_format: rgb
width: 416
height: 416
```