NVR with realtime local object detection for IP cameras
Go to file
2024-06-06 09:16:28 -06:00
.cspell cspell fixes (#11447) 2024-05-20 07:37:56 -06:00
.devcontainer Auth! (#11347) 2024-05-18 10:36:13 -06:00
.github fix duplicate id in bug report (#11718) 2024-06-03 08:00:29 -06:00
.vscode Set User Agent for FFmpeg calls (#4555) 2022-11-30 16:53:45 -06:00
config Improve the devcontainer experience (#3492) 2022-11-20 07:34:12 -06:00
docker Ensure nginx worker processes respects docker limits (#11769) 2024-06-05 13:43:22 -06:00
docs Update authentication.md to note port 8080 vs 5000 (#11722) 2024-06-03 11:53:59 -06:00
frigate Change debug message about deleting db entries to warning (#11780) 2024-06-06 09:16:28 -06:00
migrations Auth! (#11347) 2024-05-18 10:36:13 -06:00
web Draggable grid layout bugfixes (#11777) 2024-06-06 06:26:02 -06:00
.dockerignore
.gitignore upgrade to latest openvino version (#11563) 2024-05-27 14:49:35 -06:00
.pylintrc
audio-labelmap.txt
benchmark_motion.py
benchmark.py
CODEOWNERS
cspell.json cspell fixes (#11447) 2024-05-20 07:37:56 -06:00
docker-compose.yml
labelmap.txt
LICENSE
Makefile
netlify.toml
process_clip.py
pyproject.toml
README.md Clarify docs about rtmp (#5052) 2023-01-13 07:20:25 -06:00

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTSP to reduce the number of connections to your camera
  • WebRTC & MSE support for low-latency live view

Documentation

View the documentation at https://docs.frigate.video

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Integration into Home Assistant

Also comes with a builtin UI:

Events