mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			470 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			470 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import cv2
 | 
						|
import imutils
 | 
						|
import time
 | 
						|
import datetime
 | 
						|
import ctypes
 | 
						|
import logging
 | 
						|
import multiprocessing as mp
 | 
						|
import threading
 | 
						|
import json
 | 
						|
from contextlib import closing
 | 
						|
import numpy as np
 | 
						|
import tensorflow as tf
 | 
						|
from object_detection.utils import label_map_util
 | 
						|
from object_detection.utils import visualization_utils as vis_util
 | 
						|
from flask import Flask, Response, make_response
 | 
						|
import paho.mqtt.client as mqtt
 | 
						|
 | 
						|
RTSP_URL = os.getenv('RTSP_URL')
 | 
						|
 | 
						|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
 | 
						|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
 | 
						|
 | 
						|
# List of the strings that is used to add correct label for each box.
 | 
						|
PATH_TO_LABELS = '/label_map.pbtext'
 | 
						|
 | 
						|
MQTT_HOST = os.getenv('MQTT_HOST')
 | 
						|
MQTT_MOTION_TOPIC = os.getenv('MQTT_MOTION_TOPIC')
 | 
						|
MQTT_OBJECT_TOPIC = os.getenv('MQTT_OBJECT_TOPIC')
 | 
						|
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
 | 
						|
 | 
						|
# TODO: make dynamic?
 | 
						|
NUM_CLASSES = 90
 | 
						|
 | 
						|
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
 | 
						|
# REGIONS = "400,350,250,50"
 | 
						|
REGIONS = os.getenv('REGIONS')
 | 
						|
 | 
						|
DETECTED_OBJECTS = []
 | 
						|
 | 
						|
# Loading label map
 | 
						|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
 | 
						|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
 | 
						|
                                                            use_display_name=True)
 | 
						|
category_index = label_map_util.create_category_index(categories)
 | 
						|
 | 
						|
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
 | 
						|
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
 | 
						|
    image_np_expanded = np.expand_dims(cropped_frame, axis=0)
 | 
						|
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
 | 
						|
 | 
						|
    # Each box represents a part of the image where a particular object was detected.
 | 
						|
    boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
 | 
						|
 | 
						|
    # Each score represent how level of confidence for each of the objects.
 | 
						|
    # Score is shown on the result image, together with the class label.
 | 
						|
    scores = detection_graph.get_tensor_by_name('detection_scores:0')
 | 
						|
    classes = detection_graph.get_tensor_by_name('detection_classes:0')
 | 
						|
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')
 | 
						|
 | 
						|
    # Actual detection.
 | 
						|
    (boxes, scores, classes, num_detections) = sess.run(
 | 
						|
        [boxes, scores, classes, num_detections],
 | 
						|
        feed_dict={image_tensor: image_np_expanded})
 | 
						|
 | 
						|
    # build an array of detected objects
 | 
						|
    objects = []
 | 
						|
    for index, value in enumerate(classes[0]):
 | 
						|
        score = scores[0, index]
 | 
						|
        if score > 0.1:
 | 
						|
            box = boxes[0, index].tolist()
 | 
						|
            box[0] = (box[0] * region_size) + region_y_offset
 | 
						|
            box[1] = (box[1] * region_size) + region_x_offset
 | 
						|
            box[2] = (box[2] * region_size) + region_y_offset
 | 
						|
            box[3] = (box[3] * region_size) + region_x_offset
 | 
						|
            objects += [value, scores[0, index]] + box
 | 
						|
        # only get the first 10 objects
 | 
						|
        if len(objects) == 60:
 | 
						|
            break
 | 
						|
 | 
						|
    return objects
 | 
						|
 | 
						|
class ObjectParser(threading.Thread):
 | 
						|
    def __init__(self, object_arrays):
 | 
						|
        threading.Thread.__init__(self)
 | 
						|
        self._object_arrays = object_arrays
 | 
						|
 | 
						|
    def run(self):
 | 
						|
        global DETECTED_OBJECTS
 | 
						|
        while True:
 | 
						|
            detected_objects = []
 | 
						|
            for object_array in self._object_arrays:
 | 
						|
                object_index = 0
 | 
						|
                while(object_index < 60 and object_array[object_index] > 0):
 | 
						|
                    object_class = object_array[object_index]
 | 
						|
                    detected_objects.append({
 | 
						|
                        'name': str(category_index.get(object_class).get('name')),
 | 
						|
                        'score': object_array[object_index+1],
 | 
						|
                        'ymin': int(object_array[object_index+2]),
 | 
						|
                        'xmin': int(object_array[object_index+3]),
 | 
						|
                        'ymax': int(object_array[object_index+4]),
 | 
						|
                        'xmax': int(object_array[object_index+5])
 | 
						|
                    })
 | 
						|
                    object_index += 6
 | 
						|
            DETECTED_OBJECTS = detected_objects
 | 
						|
            time.sleep(0.1)
 | 
						|
class MqttPublisher(threading.Thread):
 | 
						|
    def __init__(self, host, motion_topic, object_topic, object_classes, motion_flags):
 | 
						|
        threading.Thread.__init__(self)
 | 
						|
        self.client = mqtt.Client()
 | 
						|
        self.client.connect(host, 1883, 60)
 | 
						|
        self.client.loop_start()
 | 
						|
        self.motion_topic = motion_topic
 | 
						|
        self.object_topic = object_topic
 | 
						|
        self.object_classes = object_classes
 | 
						|
        self.motion_flags = motion_flags
 | 
						|
 | 
						|
    def run(self):
 | 
						|
        global DETECTED_OBJECTS
 | 
						|
 | 
						|
        last_sent_payload = ""
 | 
						|
        last_motion = ""
 | 
						|
        while True:
 | 
						|
            # initialize the payload
 | 
						|
            payload = {}
 | 
						|
            for obj in self.object_classes:
 | 
						|
                payload[obj] = []
 | 
						|
            # loop over detected objects and populate
 | 
						|
            # the payload
 | 
						|
            detected_objects = DETECTED_OBJECTS.copy()
 | 
						|
            for obj in detected_objects:
 | 
						|
                if obj['name'] in self.object_classes:
 | 
						|
                    payload[obj['name']].append(obj)
 | 
						|
            
 | 
						|
            new_payload = json.dumps(payload, sort_keys=True)
 | 
						|
            if new_payload != last_sent_payload:
 | 
						|
                last_sent_payload = new_payload
 | 
						|
                self.client.publish(self.object_topic, new_payload, retain=False)
 | 
						|
 | 
						|
            motion_status = 'OFF'
 | 
						|
            if any(obj.value == 1 for obj in self.motion_flags):
 | 
						|
                motion_status = 'ON'
 | 
						|
            
 | 
						|
            if motion_status != last_motion:
 | 
						|
                last_motion = motion_status
 | 
						|
                self.client.publish(self.motion_topic, motion_status, retain=False)
 | 
						|
            
 | 
						|
 | 
						|
            time.sleep(0.1)
 | 
						|
 | 
						|
def main():
 | 
						|
    # Parse selected regions
 | 
						|
    regions = []
 | 
						|
    for region_string in REGIONS.split(':'):
 | 
						|
        region_parts = region_string.split(',')
 | 
						|
        regions.append({
 | 
						|
            'size': int(region_parts[0]),
 | 
						|
            'x_offset': int(region_parts[1]),
 | 
						|
            'y_offset': int(region_parts[2]),
 | 
						|
            'min_object_size': int(region_parts[3]),
 | 
						|
            # shared value for signaling to the capture process that we are ready for the next frame
 | 
						|
            # (1 for ready 0 for not ready)
 | 
						|
            'ready_for_frame': mp.Value('i', 1),
 | 
						|
            # shared value for motion detection signal (1 for motion 0 for no motion)
 | 
						|
            'motion_detected': mp.Value('i', 0),
 | 
						|
            # create shared array for storing 10 detected objects
 | 
						|
            # note: this must be a double even though the value you are storing
 | 
						|
            #       is a float. otherwise it stops updating the value in shared
 | 
						|
            #       memory. probably something to do with the size of the memory block
 | 
						|
            'output_array': mp.Array(ctypes.c_double, 6*10)
 | 
						|
        })
 | 
						|
    # capture a single frame and check the frame shape so the correct array
 | 
						|
    # size can be allocated in memory
 | 
						|
    video = cv2.VideoCapture(RTSP_URL)
 | 
						|
    ret, frame = video.read()
 | 
						|
    if ret:
 | 
						|
        frame_shape = frame.shape
 | 
						|
    else:
 | 
						|
        print("Unable to capture video stream")
 | 
						|
        exit(1)
 | 
						|
    video.release()
 | 
						|
        
 | 
						|
    # compute the flattened array length from the array shape
 | 
						|
    flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
 | 
						|
    # create shared array for storing the full frame image data
 | 
						|
    shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
 | 
						|
    # create shared value for storing the frame_time
 | 
						|
    shared_frame_time = mp.Value('d', 0.0)
 | 
						|
    # shape current frame so it can be treated as an image
 | 
						|
    frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
						|
 | 
						|
    capture_process = mp.Process(target=fetch_frames, args=(shared_arr, 
 | 
						|
        shared_frame_time, [region['ready_for_frame'] for region in regions], frame_shape))
 | 
						|
    capture_process.daemon = True
 | 
						|
 | 
						|
    detection_processes = []
 | 
						|
    for index, region in enumerate(regions):
 | 
						|
        detection_process = mp.Process(target=process_frames, args=(shared_arr, 
 | 
						|
            region['output_array'],
 | 
						|
            shared_frame_time,
 | 
						|
            region['motion_detected'],
 | 
						|
            frame_shape, 
 | 
						|
            region['size'], region['x_offset'], region['y_offset']))
 | 
						|
        detection_process.daemon = True
 | 
						|
        detection_processes.append(detection_process)
 | 
						|
 | 
						|
    motion_processes = []
 | 
						|
    for index, region in enumerate(regions):
 | 
						|
        motion_process = mp.Process(target=detect_motion, args=(shared_arr,
 | 
						|
            shared_frame_time,
 | 
						|
            region['ready_for_frame'],
 | 
						|
            region['motion_detected'],
 | 
						|
            frame_shape, 
 | 
						|
            region['size'], region['x_offset'], region['y_offset'],
 | 
						|
            region['min_object_size']))
 | 
						|
        motion_process.daemon = True
 | 
						|
        motion_processes.append(motion_process)
 | 
						|
 | 
						|
    object_parser = ObjectParser([region['output_array'] for region in regions])
 | 
						|
    object_parser.start()
 | 
						|
 | 
						|
    mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_MOTION_TOPIC, MQTT_OBJECT_TOPIC, 
 | 
						|
        MQTT_OBJECT_CLASSES.split(','), 
 | 
						|
        [region['motion_detected'] for region in regions])
 | 
						|
    mqtt_publisher.start()
 | 
						|
 | 
						|
    capture_process.start()
 | 
						|
    print("capture_process pid ", capture_process.pid)
 | 
						|
    for detection_process in detection_processes:
 | 
						|
        detection_process.start()
 | 
						|
        print("detection_process pid ", detection_process.pid)
 | 
						|
    for motion_process in motion_processes:
 | 
						|
        motion_process.start()
 | 
						|
        print("motion_process pid ", motion_process.pid)
 | 
						|
 | 
						|
    app = Flask(__name__)
 | 
						|
 | 
						|
    @app.route('/')
 | 
						|
    def index():
 | 
						|
        # return a multipart response
 | 
						|
        return Response(imagestream(),
 | 
						|
                        mimetype='multipart/x-mixed-replace; boundary=frame')
 | 
						|
    def imagestream():
 | 
						|
        global DETECTED_OBJECTS
 | 
						|
        while True:
 | 
						|
            # max out at 5 FPS
 | 
						|
            time.sleep(0.2)
 | 
						|
            # make a copy of the current detected objects
 | 
						|
            detected_objects = DETECTED_OBJECTS.copy()
 | 
						|
            # make a copy of the current frame
 | 
						|
            frame = frame_arr.copy()
 | 
						|
            # convert to RGB for drawing
 | 
						|
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 | 
						|
            # draw the bounding boxes on the screen
 | 
						|
            for obj in detected_objects:
 | 
						|
                vis_util.draw_bounding_box_on_image_array(frame,
 | 
						|
                    obj['ymin'],
 | 
						|
                    obj['xmin'],
 | 
						|
                    obj['ymax'],
 | 
						|
                    obj['xmax'],
 | 
						|
                    color='red',
 | 
						|
                    thickness=2,
 | 
						|
                    display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
 | 
						|
                    use_normalized_coordinates=False)
 | 
						|
 | 
						|
            for region in regions:
 | 
						|
                color = (255,255,255)
 | 
						|
                if region['motion_detected'].value == 1:
 | 
						|
                    color = (0,255,0)
 | 
						|
                cv2.rectangle(frame, (region['x_offset'], region['y_offset']), 
 | 
						|
                    (region['x_offset']+region['size'], region['y_offset']+region['size']), 
 | 
						|
                    color, 2)
 | 
						|
 | 
						|
            cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
 | 
						|
		        cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
 | 
						|
            # convert back to BGR
 | 
						|
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
 | 
						|
            # encode the image into a jpg
 | 
						|
            ret, jpg = cv2.imencode('.jpg', frame)
 | 
						|
            yield (b'--frame\r\n'
 | 
						|
                b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
 | 
						|
 | 
						|
    app.run(host='0.0.0.0', debug=False)
 | 
						|
 | 
						|
    capture_process.join()
 | 
						|
    for detection_process in detection_processes:
 | 
						|
        detection_process.join()
 | 
						|
    for motion_process in motion_processes:
 | 
						|
        motion_process.join()
 | 
						|
    object_parser.join()
 | 
						|
    mqtt_publisher.join()
 | 
						|
 | 
						|
# convert shared memory array into numpy array
 | 
						|
def tonumpyarray(mp_arr):
 | 
						|
    return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
 | 
						|
 | 
						|
# fetch the frames as fast a possible, only decoding the frames when the
 | 
						|
# detection_process has consumed the current frame
 | 
						|
def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
 | 
						|
    # convert shared memory array into numpy and shape into image array
 | 
						|
    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
						|
 | 
						|
    # start the video capture
 | 
						|
    video = cv2.VideoCapture(RTSP_URL)
 | 
						|
    # keep the buffer small so we minimize old data
 | 
						|
    video.set(cv2.CAP_PROP_BUFFERSIZE,1)
 | 
						|
 | 
						|
    while True:
 | 
						|
        # grab the frame, but dont decode it yet
 | 
						|
        ret = video.grab()
 | 
						|
        # snapshot the time the frame was grabbed
 | 
						|
        frame_time = datetime.datetime.now()
 | 
						|
        if ret:
 | 
						|
            # if the anyone is ready for the next frame decode it
 | 
						|
            # otherwise skip this frame and move onto the next one
 | 
						|
            if any(flag.value == 1 for flag in ready_for_frame_flags):
 | 
						|
                # go ahead and decode the current frame
 | 
						|
                ret, frame = video.retrieve()
 | 
						|
                if ret:
 | 
						|
                    arr[:] = frame
 | 
						|
                    shared_frame_time.value = frame_time.timestamp()
 | 
						|
                    # signal to the detection_processes by setting the shared_frame_time
 | 
						|
                    for flag in ready_for_frame_flags:
 | 
						|
                        flag.value = 0
 | 
						|
            else:
 | 
						|
                # sleep a little to reduce CPU usage
 | 
						|
                time.sleep(0.1)
 | 
						|
    
 | 
						|
    video.release()
 | 
						|
 | 
						|
# do the actual object detection
 | 
						|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
 | 
						|
    # shape shared input array into frame for processing
 | 
						|
    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
						|
 | 
						|
    # Load a (frozen) Tensorflow model into memory before the processing loop
 | 
						|
    detection_graph = tf.Graph()
 | 
						|
    with detection_graph.as_default():
 | 
						|
        od_graph_def = tf.GraphDef()
 | 
						|
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
 | 
						|
            serialized_graph = fid.read()
 | 
						|
            od_graph_def.ParseFromString(serialized_graph)
 | 
						|
            tf.import_graph_def(od_graph_def, name='')
 | 
						|
        sess = tf.Session(graph=detection_graph)
 | 
						|
 | 
						|
    no_frames_available = -1
 | 
						|
    frame_time = 0.0
 | 
						|
    while True:
 | 
						|
        now = datetime.datetime.now().timestamp()
 | 
						|
        # if there is no motion detected
 | 
						|
        if shared_motion.value == 0:
 | 
						|
            time.sleep(0.1)
 | 
						|
            continue
 | 
						|
 | 
						|
        # if there isnt a new frame ready for processing
 | 
						|
        if shared_frame_time.value == frame_time:
 | 
						|
            # save the first time there were no frames available
 | 
						|
            if no_frames_available == -1:
 | 
						|
                no_frames_available = now
 | 
						|
            # if there havent been any frames available in 30 seconds, 
 | 
						|
            # sleep to avoid using so much cpu if the camera feed is down
 | 
						|
            if no_frames_available > 0 and (now - no_frames_available) > 30:
 | 
						|
                time.sleep(1)
 | 
						|
                print("sleeping because no frames have been available in a while")
 | 
						|
            else:
 | 
						|
                # rest a little bit to avoid maxing out the CPU
 | 
						|
                time.sleep(0.1)
 | 
						|
            continue
 | 
						|
        
 | 
						|
        # we got a valid frame, so reset the timer
 | 
						|
        no_frames_available = -1
 | 
						|
 | 
						|
        # if the frame is more than 0.5 second old, ignore it
 | 
						|
        if (now - shared_frame_time.value) > 0.5:
 | 
						|
            # rest a little bit to avoid maxing out the CPU
 | 
						|
            time.sleep(0.1)
 | 
						|
            continue
 | 
						|
        
 | 
						|
        # make a copy of the cropped frame
 | 
						|
        cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
 | 
						|
        frame_time = shared_frame_time.value
 | 
						|
 | 
						|
        # convert to RGB
 | 
						|
        cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
 | 
						|
        # do the object detection
 | 
						|
        objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
 | 
						|
        # copy the detected objects to the output array, filling the array when needed
 | 
						|
        shared_output_arr[:] = objects + [0.0] * (60-len(objects))
 | 
						|
 | 
						|
# do the actual object detection
 | 
						|
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
 | 
						|
    # shape shared input array into frame for processing
 | 
						|
    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
						|
 | 
						|
    no_frames_available = -1
 | 
						|
    avg_frame = None
 | 
						|
    last_motion = -1
 | 
						|
    frame_time = 0.0
 | 
						|
    while True:
 | 
						|
        now = datetime.datetime.now().timestamp()
 | 
						|
        # if it has been 30 seconds since the last motion, clear the flag
 | 
						|
        if last_motion > 0 and (now - last_motion) > 30:
 | 
						|
            last_motion = -1
 | 
						|
            shared_motion.value = 0
 | 
						|
        # if there isnt a frame ready for processing
 | 
						|
        if shared_frame_time.value == frame_time:
 | 
						|
            # save the first time there were no frames available
 | 
						|
            if no_frames_available == -1:
 | 
						|
                no_frames_available = now
 | 
						|
            # if there havent been any frames available in 30 seconds, 
 | 
						|
            # sleep to avoid using so much cpu if the camera feed is down
 | 
						|
            if no_frames_available > 0 and (now - no_frames_available) > 30:
 | 
						|
                time.sleep(1)
 | 
						|
                print("sleeping because no frames have been available in a while")
 | 
						|
            else:
 | 
						|
                # rest a little bit to avoid maxing out the CPU
 | 
						|
                time.sleep(0.1)
 | 
						|
            if ready_for_frame.value == 0:
 | 
						|
                ready_for_frame.value = 1
 | 
						|
            continue
 | 
						|
        
 | 
						|
        # we got a valid frame, so reset the timer
 | 
						|
        no_frames_available = -1
 | 
						|
 | 
						|
        # if the frame is more than 0.5 second old, discard it
 | 
						|
        if (now - shared_frame_time.value) > 0.5:
 | 
						|
            # signal that we need a new frame
 | 
						|
            ready_for_frame.value = 1
 | 
						|
            # rest a little bit to avoid maxing out the CPU
 | 
						|
            time.sleep(0.1)
 | 
						|
            continue
 | 
						|
        
 | 
						|
        # make a copy of the cropped frame
 | 
						|
        cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
 | 
						|
        frame_time = shared_frame_time.value
 | 
						|
        # signal that the frame has been used so a new one will be ready
 | 
						|
        ready_for_frame.value = 1
 | 
						|
 | 
						|
        # convert to grayscale
 | 
						|
        gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
 | 
						|
        # apply gaussian blur
 | 
						|
        gray = cv2.GaussianBlur(gray, (21, 21), 0)
 | 
						|
 | 
						|
        if avg_frame is None:
 | 
						|
            avg_frame = gray.copy().astype("float")
 | 
						|
            continue
 | 
						|
        
 | 
						|
        # look at the delta from the avg_frame
 | 
						|
        cv2.accumulateWeighted(gray, avg_frame, 0.5)
 | 
						|
        frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
 | 
						|
        thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
 | 
						|
 
 | 
						|
        # dilate the thresholded image to fill in holes, then find contours
 | 
						|
        # on thresholded image
 | 
						|
        thresh = cv2.dilate(thresh, None, iterations=2)
 | 
						|
        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 | 
						|
            cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
        cnts = imutils.grab_contours(cnts)
 | 
						|
 | 
						|
        # loop over the contours
 | 
						|
        for c in cnts:
 | 
						|
            # if the contour is big enough report motion
 | 
						|
            if cv2.contourArea(c) > min_motion_area:
 | 
						|
                last_motion = now
 | 
						|
                shared_motion.value = 1
 | 
						|
                break
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    mp.freeze_support()
 | 
						|
    main() |