blakeblackshear.frigate/frigate/detectors/yolo_utils.py

44 lines
2.0 KiB
Python
Raw Normal View History

import logging
import numpy as np
import cv2
logger = logging.getLogger(__name__)
def yolov8_preprocess(tensor_input, model_input_shape):
# tensor_input must be nhwc
assert tensor_input.shape[3] == 3
if tuple(tensor_input.shape[1:3]) != tuple(model_input_shape[2:4]):
logger.warn(f"yolov8_preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!")
# cv2.dnn.blobFromImage is faster than numpying it
return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.3, nms_threshold = 0.5):
model_box_count = tensor_output.shape[2]
probs = tensor_output[0, 4:, :]
all_ids = np.argmax(probs, axis=0)
all_confidences = probs.T[np.arange(model_box_count), all_ids]
all_boxes = tensor_output[0, 0:4, :].T
mask = (all_confidences > score_threshold)
class_ids = all_ids[mask]
confidences = all_confidences[mask]
cx, cy, w, h = all_boxes[mask].T
if model_input_shape[3] == 3:
scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
else:
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
detections = np.stack((class_ids, confidences, scale_y * (cy - h / 2), scale_x * (cx - w / 2), scale_y * (cy + h / 2), scale_x * (cx + w / 2)), axis=1)
if detections.shape[0] > box_count:
# if too many detections, do nms filtering to suppress overlapping boxes
boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold, nms_threshold)
detections = detections[indexes]
# if still too many, trim the rest by confidence
if detections.shape[0] > box_count:
detections = detections[np.argpartition(detections[:,1], -box_count)[-box_count:]]
detections = detections.copy()
detections.resize((box_count, 6))
return detections