mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
179 lines
5.3 KiB
Python
179 lines
5.3 KiB
Python
|
import unittest
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
from norfair.drawing.color import Palette
|
||
|
from norfair.drawing.drawer import Drawer
|
||
|
|
||
|
from frigate.video import (
|
||
|
get_cluster_boundary,
|
||
|
get_cluster_candidates,
|
||
|
get_cluster_region,
|
||
|
)
|
||
|
|
||
|
|
||
|
def draw_box(frame, box, color=(255, 0, 0), thickness=2):
|
||
|
cv2.rectangle(
|
||
|
frame,
|
||
|
(box[0], box[1]),
|
||
|
(box[2], box[3]),
|
||
|
color,
|
||
|
thickness,
|
||
|
)
|
||
|
|
||
|
|
||
|
def save_clusters_image(name, boxes, candidates, regions=[]):
|
||
|
canvas = np.zeros((1000, 2000, 3), np.uint8)
|
||
|
for cluster in candidates:
|
||
|
color = Palette.choose_color(np.random.rand())
|
||
|
for b in cluster:
|
||
|
box = boxes[b]
|
||
|
draw_box(canvas, box, color, 2)
|
||
|
# bottom right
|
||
|
text_anchor = (
|
||
|
box[2],
|
||
|
box[3],
|
||
|
)
|
||
|
canvas = Drawer.text(
|
||
|
canvas,
|
||
|
str(b),
|
||
|
position=text_anchor,
|
||
|
size=None,
|
||
|
color=(255, 255, 255),
|
||
|
thickness=None,
|
||
|
)
|
||
|
for r in regions:
|
||
|
draw_box(canvas, r, (0, 255, 0), 2)
|
||
|
cv2.imwrite(
|
||
|
f"debug/frames/{name}.jpg",
|
||
|
canvas,
|
||
|
)
|
||
|
|
||
|
|
||
|
def save_cluster_boundary_image(name, boxes, bounding_boxes):
|
||
|
canvas = np.zeros((1000, 2000, 3), np.uint8)
|
||
|
color = Palette.choose_color(np.random.rand())
|
||
|
for box in boxes:
|
||
|
draw_box(canvas, box, color, 2)
|
||
|
for bound in bounding_boxes:
|
||
|
draw_box(canvas, bound, (0, 255, 0), 2)
|
||
|
cv2.imwrite(
|
||
|
f"debug/frames/{name}.jpg",
|
||
|
canvas,
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestConfig(unittest.TestCase):
|
||
|
def setUp(self):
|
||
|
self.frame_shape = (1000, 2000)
|
||
|
self.min_region_size = 160
|
||
|
|
||
|
def test_cluster_candidates(self):
|
||
|
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
|
||
|
|
||
|
cluster_candidates = get_cluster_candidates(
|
||
|
self.frame_shape, self.min_region_size, boxes
|
||
|
)
|
||
|
|
||
|
# save_clusters_image("cluster_candidates", boxes, cluster_candidates)
|
||
|
|
||
|
assert len(cluster_candidates) == 2
|
||
|
|
||
|
def test_cluster_boundary(self):
|
||
|
boxes = [(100, 100, 200, 200), (215, 215, 325, 325)]
|
||
|
boundary_boxes = [
|
||
|
get_cluster_boundary(box, self.min_region_size) for box in boxes
|
||
|
]
|
||
|
|
||
|
# save_cluster_boundary_image("bound", boxes, boundary_boxes)
|
||
|
assert len(boundary_boxes) == 2
|
||
|
|
||
|
def test_cluster_regions(self):
|
||
|
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
|
||
|
|
||
|
cluster_candidates = get_cluster_candidates(
|
||
|
self.frame_shape, self.min_region_size, boxes
|
||
|
)
|
||
|
|
||
|
regions = [
|
||
|
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||
|
for candidate in cluster_candidates
|
||
|
]
|
||
|
|
||
|
# save_clusters_image("regions", boxes, cluster_candidates, regions)
|
||
|
assert len(regions) == 2
|
||
|
|
||
|
def test_box_too_small_for_cluster(self):
|
||
|
boxes = [(100, 100, 600, 600), (655, 100, 700, 145)]
|
||
|
|
||
|
cluster_candidates = get_cluster_candidates(
|
||
|
self.frame_shape, self.min_region_size, boxes
|
||
|
)
|
||
|
|
||
|
regions = [
|
||
|
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||
|
for candidate in cluster_candidates
|
||
|
]
|
||
|
|
||
|
save_clusters_image("too_small", boxes, cluster_candidates, regions)
|
||
|
|
||
|
assert len(cluster_candidates) == 2
|
||
|
assert len(regions) == 2
|
||
|
|
||
|
def test_redundant_clusters(self):
|
||
|
boxes = [(100, 100, 200, 200), (305, 305, 415, 415)]
|
||
|
|
||
|
cluster_candidates = get_cluster_candidates(
|
||
|
self.frame_shape, self.min_region_size, boxes
|
||
|
)
|
||
|
|
||
|
regions = [
|
||
|
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||
|
for candidate in cluster_candidates
|
||
|
]
|
||
|
|
||
|
# save_clusters_image("redundant", boxes, cluster_candidates, regions)
|
||
|
|
||
|
assert len(cluster_candidates) == 2
|
||
|
assert all([len(c) == 1 for c in cluster_candidates])
|
||
|
assert len(regions) == 2
|
||
|
|
||
|
def test_combine_boxes(self):
|
||
|
boxes = [
|
||
|
(460, 0, 561, 144),
|
||
|
(565, 0, 586, 71),
|
||
|
]
|
||
|
|
||
|
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
|
||
|
# save_cluster_boundary_image("combine_bound", boxes, boundary_boxes)
|
||
|
|
||
|
cluster_candidates = get_cluster_candidates(
|
||
|
self.frame_shape, self.min_region_size, boxes
|
||
|
)
|
||
|
|
||
|
regions = [
|
||
|
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||
|
for candidate in cluster_candidates
|
||
|
]
|
||
|
|
||
|
# save_clusters_image("combine", boxes, cluster_candidates, regions)
|
||
|
assert len(regions) == 1
|
||
|
|
||
|
def test_dont_combine_boxes(self):
|
||
|
boxes = [(460, 0, 532, 129), (586, 0, 606, 46)]
|
||
|
|
||
|
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
|
||
|
# save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes)
|
||
|
|
||
|
cluster_candidates = get_cluster_candidates(
|
||
|
self.frame_shape, self.min_region_size, boxes
|
||
|
)
|
||
|
|
||
|
regions = [
|
||
|
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||
|
for candidate in cluster_candidates
|
||
|
]
|
||
|
|
||
|
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
|
||
|
assert len(regions) == 2
|