blakeblackshear.frigate/frigate/test/test_video.py

322 lines
9.7 KiB
Python
Raw Normal View History

import unittest
import cv2
import numpy as np
from norfair.drawing.color import Palette
from norfair.drawing.drawer import Drawer
from frigate.util.image import intersection, transliterate_to_latin
from frigate.util.object import (
get_cluster_boundary,
get_cluster_candidates,
get_cluster_region,
get_region_from_grid,
reduce_detections,
)
def draw_box(frame, box, color=(255, 0, 0), thickness=2):
cv2.rectangle(
frame,
(box[0], box[1]),
(box[2], box[3]),
color,
thickness,
)
def save_clusters_image(name, boxes, candidates, regions=[]):
canvas = np.zeros((1000, 2000, 3), np.uint8)
for cluster in candidates:
color = Palette.choose_color(np.random.rand())
for b in cluster:
box = boxes[b]
draw_box(canvas, box, color, 2)
# bottom right
text_anchor = (
box[2],
box[3],
)
canvas = Drawer.text(
canvas,
str(b),
position=text_anchor,
size=None,
color=(255, 255, 255),
thickness=None,
)
for r in regions:
draw_box(canvas, r, (0, 255, 0), 2)
cv2.imwrite(
f"debug/frames/{name}.jpg",
canvas,
)
def save_cluster_boundary_image(name, boxes, bounding_boxes):
canvas = np.zeros((1000, 2000, 3), np.uint8)
color = Palette.choose_color(np.random.rand())
for box in boxes:
draw_box(canvas, box, color, 2)
for bound in bounding_boxes:
draw_box(canvas, bound, (0, 255, 0), 2)
cv2.imwrite(
f"debug/frames/{name}.jpg",
canvas,
)
class TestRegion(unittest.TestCase):
def setUp(self):
self.frame_shape = (1000, 2000)
self.min_region_size = 160
def test_cluster_candidates(self):
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
# save_clusters_image("cluster_candidates", boxes, cluster_candidates)
assert len(cluster_candidates) == 2
def test_transliterate_to_latin(self):
self.assertEqual(transliterate_to_latin("frégate"), "fregate")
self.assertEqual(transliterate_to_latin("utilité"), "utilite")
self.assertEqual(transliterate_to_latin("imágé"), "image")
def test_cluster_boundary(self):
boxes = [(100, 100, 200, 200), (215, 215, 325, 325)]
boundary_boxes = [
get_cluster_boundary(box, self.min_region_size) for box in boxes
]
# save_cluster_boundary_image("bound", boxes, boundary_boxes)
assert len(boundary_boxes) == 2
def test_cluster_regions(self):
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("regions", boxes, cluster_candidates, regions)
assert len(regions) == 2
def test_box_too_small_for_cluster(self):
boxes = [(100, 100, 600, 600), (655, 100, 700, 145)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
save_clusters_image("too_small", boxes, cluster_candidates, regions)
assert len(cluster_candidates) == 2
assert len(regions) == 2
def test_redundant_clusters(self):
boxes = [(100, 100, 200, 200), (305, 305, 415, 415)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("redundant", boxes, cluster_candidates, regions)
assert len(cluster_candidates) == 2
assert all([len(c) == 1 for c in cluster_candidates])
assert len(regions) == 2
def test_combine_boxes(self):
boxes = [
(460, 0, 561, 144),
(565, 0, 586, 71),
]
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
# save_cluster_boundary_image("combine_bound", boxes, boundary_boxes)
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("combine", boxes, cluster_candidates, regions)
assert len(regions) == 1
def test_dont_combine_boxes(self):
boxes = [(460, 0, 532, 129), (586, 0, 606, 46)]
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
# save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes)
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
assert len(regions) == 2
class TestObjectBoundingBoxes(unittest.TestCase):
def setUp(self) -> None:
pass
def test_box_intersection(self):
box_a = [2012, 191, 2031, 205]
box_b = [887, 92, 985, 151]
box_c = [899, 128, 1080, 175]
assert intersection(box_a, box_b) == None
assert intersection(box_b, box_c) == (899, 128, 985, 151)
def test_overlapping_objects_reduced(self):
"""Test that object not on edge of region is used when a higher scoring object at the edge of region is provided."""
detections = [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
),
(
"car",
0.88,
(1238, 73, 1401, 171),
15974,
1.663265306122449,
(1242, 0, 1602, 360),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert consolidated_detections == [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
)
]
def test_non_overlapping_objects_not_reduced(self):
"""Test that non overlapping objects are not reduced."""
detections = [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
),
(
"car",
0.83203125,
(1121, 55, 1214, 100),
4185,
2.066666666666667,
(922, 0, 1242, 320),
),
(
"car",
0.85546875,
(1414, 97, 1571, 186),
13973,
1.7640449438202248,
(1248, 0, 1568, 320),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
def test_overlapping_different_size_objects_not_reduced(self):
"""Test that overlapping objects that are significantly different in size are not reduced."""
detections = [
(
"car",
0.81,
(164, 279, 816, 719),
286880,
1.48,
(90, 0, 910, 820),
),
(
"car",
0.83203125,
(248, 340, 328, 385),
3600,
1.777,
(0, 0, 460, 460),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
class TestRegionGrid(unittest.TestCase):
def setUp(self) -> None:
pass
def test_region_in_range(self):
"""Test that region is kept at minimal size when within std dev."""
frame_shape = (720, 1280)
box = [450, 450, 550, 550]
region_grid = [
[],
[],
[],
[{}, {}, {}, {}, {}, {"sizes": [0.25], "mean": 0.26, "std_dev": 0.01}],
]
region = get_region_from_grid(frame_shape, box, 320, region_grid)
assert region[2] - region[0] == 320
def test_region_out_of_range(self):
"""Test that region is upsized when outside of std dev."""
frame_shape = (720, 1280)
box = [450, 450, 550, 550]
region_grid = [
[],
[],
[],
[{}, {}, {}, {}, {}, {"sizes": [0.5], "mean": 0.5, "std_dev": 0.1}],
]
region = get_region_from_grid(frame_shape, box, 320, region_grid)
assert region[2] - region[0] > 320