mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
update benchmark script to mirror actual frigate use
This commit is contained in:
parent
a5bef89123
commit
1734c0569a
85
benchmark.py
85
benchmark.py
@ -1,18 +1,79 @@
|
|||||||
import statistics
|
import os
|
||||||
|
from statistics import mean
|
||||||
|
import multiprocessing as mp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import datetime
|
||||||
from frigate.edgetpu import ObjectDetector
|
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
|
||||||
|
|
||||||
object_detector = ObjectDetector()
|
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
|
||||||
|
labels = load_labels('/labelmap.txt')
|
||||||
|
|
||||||
frame = np.zeros((300,300,3), np.uint8)
|
######
|
||||||
input_frame = np.expand_dims(frame, axis=0)
|
# Minimal same process runner
|
||||||
|
######
|
||||||
|
# object_detector = ObjectDetector()
|
||||||
|
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
||||||
|
|
||||||
detection_times = []
|
# start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
for x in range(0, 100):
|
# frame_times = []
|
||||||
start = time.monotonic()
|
# for x in range(0, 1000):
|
||||||
object_detector.detect_raw(input_frame)
|
# start_frame = datetime.datetime.now().timestamp()
|
||||||
detection_times.append(time.monotonic()-start)
|
|
||||||
|
|
||||||
print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms")
|
# tensor_input[:] = my_frame
|
||||||
|
# detections = object_detector.detect_raw(tensor_input)
|
||||||
|
# parsed_detections = []
|
||||||
|
# for d in detections:
|
||||||
|
# if d[1] < 0.4:
|
||||||
|
# break
|
||||||
|
# parsed_detections.append((
|
||||||
|
# labels[int(d[0])],
|
||||||
|
# float(d[1]),
|
||||||
|
# (d[2], d[3], d[4], d[5])
|
||||||
|
# ))
|
||||||
|
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||||
|
|
||||||
|
# duration = datetime.datetime.now().timestamp()-start
|
||||||
|
# print(f"Processed for {duration:.2f} seconds.")
|
||||||
|
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||||
|
|
||||||
|
######
|
||||||
|
# Separate process runner
|
||||||
|
######
|
||||||
|
def start(id, num_detections, detection_queue):
|
||||||
|
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
frame_times = []
|
||||||
|
for x in range(0, num_detections):
|
||||||
|
start_frame = datetime.datetime.now().timestamp()
|
||||||
|
detections = object_detector.detect(my_frame)
|
||||||
|
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||||
|
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||||
|
|
||||||
|
edgetpu_process = EdgeTPUProcess()
|
||||||
|
|
||||||
|
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
|
||||||
|
|
||||||
|
####
|
||||||
|
# Multiple camera processes
|
||||||
|
####
|
||||||
|
camera_processes = []
|
||||||
|
for x in range(0, 10):
|
||||||
|
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
|
||||||
|
camera_process.daemon = True
|
||||||
|
camera_processes.append(camera_process)
|
||||||
|
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
for p in camera_processes:
|
||||||
|
p.start()
|
||||||
|
|
||||||
|
for p in camera_processes:
|
||||||
|
p.join()
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
print(f"Total - Processed for {duration:.2f} seconds.")
|
Loading…
Reference in New Issue
Block a user