blakeblackshear.frigate/frigate/motion/improved_motion.py

209 lines
7.6 KiB
Python
Raw Permalink Normal View History

import logging
import cv2
import imutils
import numpy as np
from scipy.ndimage import gaussian_filter
from frigate.comms.config_updater import ConfigSubscriber
from frigate.config import MotionConfig
from frigate.motion import MotionDetector
logger = logging.getLogger(__name__)
class ImprovedMotionDetector(MotionDetector):
def __init__(
self,
frame_shape,
config: MotionConfig,
fps: int,
name="improved",
blur_radius=1,
interpolation=cv2.INTER_NEAREST,
contrast_frame_history=50,
):
self.name = name
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0] / config.frame_height
self.motion_frame_size = (
config.frame_height,
config.frame_height * frame_shape[1] // frame_shape[0],
)
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(
config.mask,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_AREA,
)
self.mask = np.where(resized_mask == [0])
self.save_images = False
self.calibrating = True
self.blur_radius = blur_radius
self.interpolation = interpolation
self.contrast_values = np.zeros((contrast_frame_history, 2), np.uint8)
self.contrast_values[:, 1:2] = 255
self.contrast_values_index = 0
self.config_subscriber = ConfigSubscriber(f"config/motion/{name}")
def is_calibrating(self):
return self.calibrating
def detect(self, frame):
motion_boxes = []
# check for updated motion config
_, updated_motion_config = self.config_subscriber.check_for_update()
if updated_motion_config:
self.config = updated_motion_config
if not self.config.enabled:
return motion_boxes
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(
gray,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=self.interpolation,
)
if self.save_images:
resized_saved = resized_frame.copy()
# Improve contrast
if self.config.improve_contrast:
# TODO tracking moving average of min/max to avoid sudden contrast changes
minval = np.percentile(resized_frame, 4).astype(np.uint8)
maxval = np.percentile(resized_frame, 96).astype(np.uint8)
# skip contrast calcs if the image is a single color
if minval < maxval:
# keep track of the last 50 contrast values
self.contrast_values[self.contrast_values_index] = [minval, maxval]
self.contrast_values_index += 1
if self.contrast_values_index == len(self.contrast_values):
self.contrast_values_index = 0
avg_min, avg_max = np.mean(self.contrast_values, axis=0)
resized_frame = np.clip(resized_frame, avg_min, avg_max)
resized_frame = (
((resized_frame - avg_min) / (avg_max - avg_min)) * 255
).astype(np.uint8)
if self.save_images:
contrasted_saved = resized_frame.copy()
# mask frame
# this has to come after contrast improvement
# Setting masked pixels to zero, to match the average frame at startup
resized_frame[self.mask] = [0]
resized_frame = gaussian_filter(resized_frame, sigma=1, radius=self.blur_radius)
if self.save_images:
blurred_saved = resized_frame.copy()
if self.save_images or self.calibrating:
self.frame_counter += 1
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the threshold image for the current frame
thresh = cv2.threshold(
frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh_dilated = cv2.dilate(thresh, None, iterations=1)
cnts = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
# loop over the contours
total_contour_area = 0
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
total_contour_area += contour_area
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append(
(
int(x * self.resize_factor),
int(y * self.resize_factor),
int((x + w) * self.resize_factor),
int((y + h) * self.resize_factor),
)
)
pct_motion = total_contour_area / (
self.motion_frame_size[0] * self.motion_frame_size[1]
)
# once the motion is less than 5% and the number of contours is < 4, assume its calibrated
if pct_motion < 0.05 and len(motion_boxes) <= 4:
self.calibrating = False
# if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
if self.calibrating or pct_motion > self.config.lightning_threshold:
self.calibrating = True
if self.save_images:
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
for b in motion_boxes:
cv2.rectangle(
thresh_dilated,
(int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)),
(int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)),
(0, 0, 255),
2,
)
frames = [
cv2.cvtColor(resized_saved, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(contrasted_saved, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(blurred_saved, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR),
thresh_dilated,
]
cv2.imwrite(
f"debug/frames/{self.name}-{self.frame_counter}.jpg",
(
cv2.hconcat(frames)
if self.frame_shape[0] > self.frame_shape[1]
else cv2.vconcat(frames)
),
)
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(
resized_frame,
self.avg_frame,
0.2 if self.calibrating else self.config.frame_alpha,
)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(
resized_frame,
self.avg_frame,
0.2 if self.calibrating else self.config.frame_alpha,
)
self.motion_frame_count = 0
return motion_boxes
def stop(self) -> None:
"""stop the motion detector."""
self.config_subscriber.stop()