2020-11-04 13:31:25 +01:00
|
|
|
import copy
|
2019-02-26 03:27:02 +01:00
|
|
|
import datetime
|
2019-12-31 21:59:22 +01:00
|
|
|
import itertools
|
2020-11-04 13:31:25 +01:00
|
|
|
import multiprocessing as mp
|
2020-07-26 14:22:45 +02:00
|
|
|
import random
|
|
|
|
import string
|
2020-11-04 13:31:25 +01:00
|
|
|
import threading
|
|
|
|
import time
|
2020-01-08 03:44:00 +01:00
|
|
|
from collections import defaultdict
|
2020-11-04 13:31:25 +01:00
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2019-12-31 21:59:22 +01:00
|
|
|
from scipy.spatial import distance as dist
|
2020-11-04 13:31:25 +01:00
|
|
|
|
2020-12-19 06:00:13 +01:00
|
|
|
from frigate.config import DetectConfig
|
2020-12-12 13:59:38 +01:00
|
|
|
from frigate.util import draw_box_with_label
|
2020-11-04 13:31:25 +01:00
|
|
|
|
2019-02-26 03:27:02 +01:00
|
|
|
|
2021-02-17 14:23:32 +01:00
|
|
|
class ObjectTracker:
|
2020-12-19 06:00:13 +01:00
|
|
|
def __init__(self, config: DetectConfig):
|
2019-12-31 21:59:22 +01:00
|
|
|
self.tracked_objects = {}
|
2020-02-16 04:07:54 +01:00
|
|
|
self.disappeared = {}
|
2020-12-19 06:00:13 +01:00
|
|
|
self.max_disappeared = config.max_disappeared
|
2019-12-31 21:59:22 +01:00
|
|
|
|
|
|
|
def register(self, index, obj):
|
2021-02-17 14:23:32 +01:00
|
|
|
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
2020-07-26 14:22:45 +02:00
|
|
|
id = f"{obj['frame_time']}-{rand_id}"
|
2021-02-17 14:23:32 +01:00
|
|
|
obj["id"] = id
|
|
|
|
obj["start_time"] = obj["frame_time"]
|
2019-12-31 21:59:22 +01:00
|
|
|
self.tracked_objects[id] = obj
|
2020-02-16 04:07:54 +01:00
|
|
|
self.disappeared[id] = 0
|
2019-12-31 21:59:22 +01:00
|
|
|
|
|
|
|
def deregister(self, id):
|
|
|
|
del self.tracked_objects[id]
|
2020-02-16 04:07:54 +01:00
|
|
|
del self.disappeared[id]
|
2021-02-17 14:23:32 +01:00
|
|
|
|
2019-12-31 21:59:22 +01:00
|
|
|
def update(self, id, new_obj):
|
2020-02-16 04:07:54 +01:00
|
|
|
self.disappeared[id] = 0
|
2020-01-08 03:43:25 +01:00
|
|
|
self.tracked_objects[id].update(new_obj)
|
2019-12-31 21:59:22 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def match_and_update(self, frame_time, new_objects):
|
2020-01-09 13:52:28 +01:00
|
|
|
# group by name
|
|
|
|
new_object_groups = defaultdict(lambda: [])
|
2019-12-31 21:59:22 +01:00
|
|
|
for obj in new_objects:
|
2021-02-17 14:23:32 +01:00
|
|
|
new_object_groups[obj[0]].append(
|
|
|
|
{
|
|
|
|
"label": obj[0],
|
|
|
|
"score": obj[1],
|
|
|
|
"box": obj[2],
|
|
|
|
"area": obj[3],
|
|
|
|
"region": obj[4],
|
|
|
|
"frame_time": frame_time,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2020-02-23 14:55:51 +01:00
|
|
|
# update any tracked objects with labels that are not
|
|
|
|
# seen in the current objects and deregister if needed
|
2020-02-23 18:18:00 +01:00
|
|
|
for obj in list(self.tracked_objects.values()):
|
2021-02-17 14:23:32 +01:00
|
|
|
if not obj["label"] in new_object_groups:
|
|
|
|
if self.disappeared[obj["id"]] >= self.max_disappeared:
|
|
|
|
self.deregister(obj["id"])
|
2020-02-23 14:55:51 +01:00
|
|
|
else:
|
2021-02-17 14:23:32 +01:00
|
|
|
self.disappeared[obj["id"]] += 1
|
|
|
|
|
2020-02-23 14:55:51 +01:00
|
|
|
if len(new_objects) == 0:
|
|
|
|
return
|
2021-02-17 14:23:32 +01:00
|
|
|
|
2020-01-09 13:52:28 +01:00
|
|
|
# track objects for each label type
|
|
|
|
for label, group in new_object_groups.items():
|
2021-02-17 14:23:32 +01:00
|
|
|
current_objects = [
|
|
|
|
o for o in self.tracked_objects.values() if o["label"] == label
|
|
|
|
]
|
|
|
|
current_ids = [o["id"] for o in current_objects]
|
|
|
|
current_centroids = np.array([o["centroid"] for o in current_objects])
|
2020-01-09 13:52:28 +01:00
|
|
|
|
2020-01-11 20:22:56 +01:00
|
|
|
# compute centroids of new objects
|
2020-01-09 13:52:28 +01:00
|
|
|
for obj in group:
|
2021-02-17 14:23:32 +01:00
|
|
|
centroid_x = int((obj["box"][0] + obj["box"][2]) / 2.0)
|
|
|
|
centroid_y = int((obj["box"][1] + obj["box"][3]) / 2.0)
|
|
|
|
obj["centroid"] = (centroid_x, centroid_y)
|
2020-01-09 13:52:28 +01:00
|
|
|
|
|
|
|
if len(current_objects) == 0:
|
|
|
|
for index, obj in enumerate(group):
|
|
|
|
self.register(index, obj)
|
|
|
|
return
|
2021-02-17 14:23:32 +01:00
|
|
|
|
|
|
|
new_centroids = np.array([o["centroid"] for o in group])
|
2020-01-09 13:52:28 +01:00
|
|
|
|
|
|
|
# compute the distance between each pair of tracked
|
|
|
|
# centroids and new centroids, respectively -- our
|
|
|
|
# goal will be to match each new centroid to an existing
|
|
|
|
# object centroid
|
|
|
|
D = dist.cdist(current_centroids, new_centroids)
|
|
|
|
|
|
|
|
# in order to perform this matching we must (1) find the
|
|
|
|
# smallest value in each row and then (2) sort the row
|
|
|
|
# indexes based on their minimum values so that the row
|
|
|
|
# with the smallest value is at the *front* of the index
|
|
|
|
# list
|
|
|
|
rows = D.min(axis=1).argsort()
|
|
|
|
|
|
|
|
# next, we perform a similar process on the columns by
|
|
|
|
# finding the smallest value in each column and then
|
|
|
|
# sorting using the previously computed row index list
|
|
|
|
cols = D.argmin(axis=1)[rows]
|
|
|
|
|
|
|
|
# in order to determine if we need to update, register,
|
|
|
|
# or deregister an object we need to keep track of which
|
|
|
|
# of the rows and column indexes we have already examined
|
|
|
|
usedRows = set()
|
|
|
|
usedCols = set()
|
|
|
|
|
|
|
|
# loop over the combination of the (row, column) index
|
|
|
|
# tuples
|
|
|
|
for (row, col) in zip(rows, cols):
|
|
|
|
# if we have already examined either the row or
|
|
|
|
# column value before, ignore it
|
|
|
|
if row in usedRows or col in usedCols:
|
|
|
|
continue
|
2019-12-31 21:59:22 +01:00
|
|
|
|
2020-01-09 13:52:28 +01:00
|
|
|
# otherwise, grab the object ID for the current row,
|
|
|
|
# set its new centroid, and reset the disappeared
|
|
|
|
# counter
|
2019-12-31 21:59:22 +01:00
|
|
|
objectID = current_ids[row]
|
2020-01-11 20:22:56 +01:00
|
|
|
self.update(objectID, group[col])
|
2020-01-09 13:52:28 +01:00
|
|
|
|
|
|
|
# indicate that we have examined each of the row and
|
|
|
|
# column indexes, respectively
|
|
|
|
usedRows.add(row)
|
|
|
|
usedCols.add(col)
|
|
|
|
|
2020-01-11 20:22:56 +01:00
|
|
|
# compute the column index we have NOT yet examined
|
2020-02-16 04:07:54 +01:00
|
|
|
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
2020-01-09 13:52:28 +01:00
|
|
|
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
# in the event that the number of object centroids is
|
2021-02-17 14:23:32 +01:00
|
|
|
# equal or greater than the number of input centroids
|
|
|
|
# we need to check and see if some of these objects have
|
|
|
|
# potentially disappeared
|
2020-02-16 04:07:54 +01:00
|
|
|
if D.shape[0] >= D.shape[1]:
|
|
|
|
for row in unusedRows:
|
|
|
|
id = current_ids[row]
|
|
|
|
|
|
|
|
if self.disappeared[id] >= self.max_disappeared:
|
|
|
|
self.deregister(id)
|
|
|
|
else:
|
|
|
|
self.disappeared[id] += 1
|
2020-01-11 20:22:56 +01:00
|
|
|
# if the number of input centroids is greater
|
2020-01-09 13:52:28 +01:00
|
|
|
# than the number of existing object centroids we need to
|
|
|
|
# register each new input centroid as a trackable object
|
2020-02-16 04:07:54 +01:00
|
|
|
else:
|
|
|
|
for col in unusedCols:
|
|
|
|
self.register(col, group[col])
|