blakeblackshear.frigate/frigate/video.py

950 lines
39 KiB
Python
Raw Normal View History

2019-03-30 02:49:27 +01:00
import os
2019-02-26 03:27:02 +01:00
import time
import datetime
import cv2
import queue
import threading
2019-03-30 02:49:27 +01:00
import ctypes
import multiprocessing as mp
import subprocess as sp
2019-05-10 13:19:39 +02:00
import numpy as np
2020-02-16 04:07:54 +01:00
import hashlib
import pyarrow.plasma as plasma
import SharedArray as sa
# import prctl
2020-01-11 20:22:56 +01:00
import copy
2019-12-31 21:59:22 +01:00
import itertools
import json
from collections import defaultdict
2020-02-16 04:07:54 +01:00
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
# from frigate.object_detection import RegionPrepper, RegionRequester
from frigate.objects import ObjectTracker
# from frigate.mqtt import MqttObjectPublisher
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
2019-02-26 03:27:02 +01:00
# Stores 2 seconds worth of frames so they can be used for other threads
2020-02-16 04:07:54 +01:00
# TODO: we do actually know when these frames are no longer needed
# class FrameTracker(threading.Thread):
# def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
# threading.Thread.__init__(self)
# self.frame_time = frame_time
# self.frame_ready = frame_ready
# self.frame_lock = frame_lock
# self.recent_frames = recent_frames
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# # wait for a frame
# with self.frame_ready:
# self.frame_ready.wait()
# # delete any old frames
# stored_frame_times = list(self.recent_frames.keys())
# stored_frame_times.sort(reverse=True)
# if len(stored_frame_times) > 100:
# frames_to_delete = stored_frame_times[50:]
# for k in frames_to_delete:
# del self.recent_frames[k]
# TODO: add back opencv fallback
2019-12-08 14:03:58 +01:00
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
2019-03-30 02:49:27 +01:00
2019-12-08 14:03:58 +01:00
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
<<<<<<< HEAD
class CameraWatchdog(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# wait a bit before checking
time.sleep(10)
if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
2020-01-15 03:38:55 +01:00
print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
# Thread to read the stdout of the ffmpeg process and update the current frame
class CameraCapture(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
2020-01-15 03:38:55 +01:00
print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
break
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
if len(raw_image) == 0:
2020-01-15 03:38:55 +01:00
print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
if (frame_num % self.camera.take_frame) != 0:
continue
with self.camera.frame_lock:
2020-01-06 14:38:37 +01:00
# TODO: use frame_queue instead
self.camera.frame_time.value = datetime.datetime.now().timestamp()
2020-01-06 14:38:37 +01:00
self.camera.frame_cache[self.camera.frame_time.value] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
2019-12-31 21:59:22 +01:00
self.camera.frame_queue.put(self.camera.frame_time.value)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
self.camera.fps.update()
2020-01-07 03:36:38 +01:00
class VideoWriter(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
2020-01-07 03:36:38 +01:00
while True:
2020-01-11 20:22:56 +01:00
(frame_time, tracked_objects) = self.camera.frame_output_queue.get()
2020-01-12 14:51:49 +01:00
# if len(tracked_objects) == 0:
2020-01-11 20:22:56 +01:00
# continue
# f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
# f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
# f.close()
2020-01-07 03:36:38 +01:00
2019-03-30 02:49:27 +01:00
class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
2019-03-30 02:49:27 +01:00
self.name = name
self.config = config
2019-12-31 21:59:22 +01:00
self.detected_objects = defaultdict(lambda: [])
self.frame_cache = {}
2020-01-02 14:38:50 +01:00
self.last_processed_frame = None
2019-12-31 21:59:22 +01:00
# queue for re-assembling frames in order
self.frame_queue = queue.Queue()
# track how many regions have been requested for a frame so we know when a frame is complete
self.regions_in_process = {}
# Lock to control access
self.regions_in_process_lock = mp.Lock()
self.finished_frame_queue = queue.Queue()
self.refined_frame_queue = queue.Queue()
self.frame_output_queue = queue.Queue()
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
camera_objects_config = config.get('objects', {})
2019-07-02 04:17:44 +02:00
self.take_frame = self.config.get('take_frame', 1)
self.watchdog_timeout = self.config.get('watchdog_timeout', 300)
self.snapshot_config = {
'show_timestamp': self.config.get('snapshots', {}).get('show_timestamp', True)
}
2019-03-30 02:49:27 +01:00
self.regions = self.config['regions']
if 'width' in self.config and 'height' in self.config:
self.frame_shape = (self.config['height'], self.config['width'], 3)
else:
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
2019-03-30 02:49:27 +01:00
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# create shared value for storing the frame_time
self.frame_time = mp.Value('d', 0.0)
2019-03-30 02:49:27 +01:00
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were tracked
self.objects_tracked = mp.Condition()
# Queue for prepped frames, max size set to (number of regions * 5)
2020-01-12 14:49:52 +01:00
self.resize_queue = queue.Queue()
2019-12-23 13:40:48 +01:00
# Queue for raw detected objects
self.detected_objects_queue = queue.Queue()
self.detected_objects_processor = DetectedObjectsProcessor(self)
self.detected_objects_processor.start()
2019-12-31 21:59:22 +01:00
# initialize the frame cache
self.cached_frame_with_objects = {
'frame_bytes': [],
'frame_time': 0
}
2019-03-30 02:49:27 +01:00
self.ffmpeg_process = None
self.capture_thread = None
self.fps = EventsPerSecond()
self.skipped_region_tracker = EventsPerSecond()
2019-03-30 02:49:27 +01:00
# combine tracked objects lists
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
2020-01-08 13:40:40 +01:00
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
self.object_filters = {}
for obj in objects_with_config:
2020-01-08 13:40:40 +01:00
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
2020-01-11 20:22:56 +01:00
# start a thread to track objects
self.object_tracker = ObjectTracker(self, 10)
self.object_tracker.start()
# start a thread to write tracked frames to disk
self.video_writer = VideoWriter(self)
self.video_writer.start()
# start a thread to queue resize requests for regions
self.region_requester = RegionRequester(self)
self.region_requester.start()
# start a thread to cache recent frames for processing
2020-01-06 14:38:37 +01:00
self.frame_tracker = FrameTracker(self.frame_time,
self.frame_ready, self.frame_lock, self.frame_cache)
2019-03-30 02:49:27 +01:00
self.frame_tracker.start()
# start a thread to resize regions
self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
self.region_prepper.start()
# start a thread to store the highest scoring recent frames for monitored object types
self.best_frames = BestFrames(self)
self.best_frames.start()
2019-03-30 02:49:27 +01:00
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self)
2019-03-30 02:49:27 +01:00
self.object_cleaner.start()
2019-12-31 21:59:22 +01:00
# start a thread to refine regions when objects are clipped
self.dynamic_region_fps = EventsPerSecond()
self.region_refiner = RegionRefiner(self)
self.region_refiner.start()
self.dynamic_region_fps.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
2019-03-30 02:49:27 +01:00
mqtt_publisher.start()
# create a watchdog thread for capture process
self.watchdog = CameraWatchdog(self)
# load in the mask for object detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
2019-07-13 18:31:18 +02:00
else:
self.mask = None
if self.mask is None:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start_or_restart_capture(self):
if not self.ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
self.ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.wait()
print("Waiting for the capture thread to exit...")
self.capture_thread.join()
self.ffmpeg_process = None
self.capture_thread = None
2020-02-16 04:07:54 +01:00
=======
# class CameraWatchdog(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# # wait a bit before checking
# time.sleep(10)
# if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
# print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
# self.camera.start_or_restart_capture()
# time.sleep(5)
# # Thread to read the stdout of the ffmpeg process and update the current frame
# class CameraCapture(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# frame_num = 0
# while True:
# if self.camera.ffmpeg_process.poll() != None:
# print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
# break
# raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
# if len(raw_image) == 0:
# print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
# break
# frame_num += 1
# if (frame_num % self.camera.take_frame) != 0:
# continue
# with self.camera.frame_lock:
# # TODO: use frame_queue instead
# self.camera.frame_time.value = datetime.datetime.now().timestamp()
# self.camera.frame_cache[self.camera.frame_time.value] = (
# np
# .frombuffer(raw_image, np.uint8)
# .reshape(self.camera.frame_shape)
# )
# self.camera.frame_queue.put(self.camera.frame_time.value)
# # Notify with the condition that a new frame is ready
# with self.camera.frame_ready:
# self.camera.frame_ready.notify_all()
# self.camera.fps.update()
# class VideoWriter(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# (frame_time, tracked_objects) = self.camera.frame_output_queue.get()
# # if len(tracked_objects) == 0:
# # continue
# # f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
# # f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
# # f.close()
# class Camera:
# def __init__(self, name, ffmpeg_config, global_objects_config, config, tflite_process, mqtt_client, mqtt_prefix):
# self.name = name
# self.config = config
# self.detected_objects = defaultdict(lambda: [])
# self.frame_cache = {}
# self.last_processed_frame = None
# # queue for re-assembling frames in order
# self.frame_queue = queue.Queue()
# # track how many regions have been requested for a frame so we know when a frame is complete
# self.regions_in_process = {}
# # Lock to control access
# self.regions_in_process_lock = mp.Lock()
# self.finished_frame_queue = queue.Queue()
# self.refined_frame_queue = queue.Queue()
# self.frame_output_queue = queue.Queue()
# self.ffmpeg = config.get('ffmpeg', {})
# self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
# self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
# self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
# self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
# self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
# camera_objects_config = config.get('objects', {})
# self.take_frame = self.config.get('take_frame', 1)
# self.watchdog_timeout = self.config.get('watchdog_timeout', 300)
# self.snapshot_config = {
# 'show_timestamp': self.config.get('snapshots', {}).get('show_timestamp', True)
# }
# self.regions = self.config['regions']
# self.frame_shape = get_frame_shape(self.ffmpeg_input)
# self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
# self.mqtt_client = mqtt_client
# self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# # create shared value for storing the frame_time
# self.frame_time = mp.Value('d', 0.0)
# # Lock to control access to the frame
# self.frame_lock = mp.Lock()
# # Condition for notifying that a new frame is ready
# self.frame_ready = mp.Condition()
# # Condition for notifying that objects were tracked
# self.objects_tracked = mp.Condition()
# # Queue for prepped frames, max size set to (number of regions * 5)
# self.resize_queue = queue.Queue()
# # Queue for raw detected objects
# self.detected_objects_queue = queue.Queue()
# self.detected_objects_processor = DetectedObjectsProcessor(self)
# self.detected_objects_processor.start()
# # initialize the frame cache
# self.cached_frame_with_objects = {
# 'frame_bytes': [],
# 'frame_time': 0
# }
# self.ffmpeg_process = None
# self.capture_thread = None
# self.fps = EventsPerSecond()
# self.skipped_region_tracker = EventsPerSecond()
# # combine tracked objects lists
# self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# # merge object filters
# global_object_filters = global_objects_config.get('filters', {})
# camera_object_filters = camera_objects_config.get('filters', {})
# objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
# self.object_filters = {}
# for obj in objects_with_config:
# self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
# # start a thread to track objects
# self.object_tracker = ObjectTracker(self, 10)
# self.object_tracker.start()
# # start a thread to write tracked frames to disk
# self.video_writer = VideoWriter(self)
# self.video_writer.start()
# # start a thread to queue resize requests for regions
# self.region_requester = RegionRequester(self)
# self.region_requester.start()
# # start a thread to cache recent frames for processing
# self.frame_tracker = FrameTracker(self.frame_time,
# self.frame_ready, self.frame_lock, self.frame_cache)
# self.frame_tracker.start()
# # start a thread to resize regions
# self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
# self.region_prepper.start()
# # start a thread to store the highest scoring recent frames for monitored object types
# self.best_frames = BestFrames(self)
# self.best_frames.start()
# # start a thread to expire objects from the detected objects list
# self.object_cleaner = ObjectCleaner(self)
# self.object_cleaner.start()
# # start a thread to refine regions when objects are clipped
# self.dynamic_region_fps = EventsPerSecond()
# self.region_refiner = RegionRefiner(self)
# self.region_refiner.start()
# self.dynamic_region_fps.start()
# # start a thread to publish object scores
# mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
# mqtt_publisher.start()
# # create a watchdog thread for capture process
# self.watchdog = CameraWatchdog(self)
# # load in the mask for object detection
# if 'mask' in self.config:
# self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
# else:
# self.mask = None
# if self.mask is None:
# self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
# self.mask[:] = 255
# def start_or_restart_capture(self):
# if not self.ffmpeg_process is None:
# print("Terminating the existing ffmpeg process...")
# self.ffmpeg_process.terminate()
# try:
# print("Waiting for ffmpeg to exit gracefully...")
# self.ffmpeg_process.wait(timeout=30)
# except sp.TimeoutExpired:
# print("FFmpeg didnt exit. Force killing...")
# self.ffmpeg_process.kill()
# self.ffmpeg_process.wait()
# print("Waiting for the capture thread to exit...")
# self.capture_thread.join()
# self.ffmpeg_process = None
# self.capture_thread = None
>>>>>>> 9b1c7e9... split into separate processes
2020-02-16 04:07:54 +01:00
# # create the process to capture frames from the input stream and store in a shared array
# print("Creating a new ffmpeg process...")
# self.start_ffmpeg()
2020-02-16 04:07:54 +01:00
# print("Creating a new capture thread...")
# self.capture_thread = CameraCapture(self)
# print("Starting a new capture thread...")
# self.capture_thread.start()
# self.fps.start()
# self.skipped_region_tracker.start()
2020-02-16 04:07:54 +01:00
# def start_ffmpeg(self):
# ffmpeg_cmd = (['ffmpeg'] +
# self.ffmpeg_global_args +
# self.ffmpeg_hwaccel_args +
# self.ffmpeg_input_args +
# ['-i', self.ffmpeg_input] +
# self.ffmpeg_output_args +
# ['pipe:'])
# print(" ".join(ffmpeg_cmd))
2020-02-16 04:07:54 +01:00
# self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
# def start(self):
# self.start_or_restart_capture()
# self.watchdog.start()
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
# def join(self):
# self.capture_thread.join()
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
# def get_capture_pid(self):
# return self.ffmpeg_process.pid
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
# def get_best(self, label):
# return self.best_frames.best_frames.get(label)
# def stats(self):
# # TODO: anything else?
# return {
# 'camera_fps': self.fps.eps(60),
# 'resize_queue': self.resize_queue.qsize(),
# 'frame_queue': self.frame_queue.qsize(),
# 'finished_frame_queue': self.finished_frame_queue.qsize(),
# 'refined_frame_queue': self.refined_frame_queue.qsize(),
# 'regions_in_process': self.regions_in_process,
# 'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
# 'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
# }
2019-03-30 03:02:40 +01:00
2020-02-16 04:07:54 +01:00
# def frame_with_objects(self, frame_time, tracked_objects=None):
# if not frame_time in self.frame_cache:
# frame = np.zeros(self.frame_shape, np.uint8)
# else:
# frame = self.frame_cache[frame_time].copy()
2020-02-16 04:07:54 +01:00
# detected_objects = self.detected_objects[frame_time].copy()
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# for region in self.regions:
# color = (255,255,255)
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
# color, 2)
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# # draw the bounding boxes on the screen
2020-01-11 20:22:56 +01:00
2020-02-16 04:07:54 +01:00
# if tracked_objects is None:
# with self.object_tracker.tracked_objects_lock:
# tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
2020-01-11 20:22:56 +01:00
2020-02-16 04:07:54 +01:00
# for obj in detected_objects:
# draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
2020-01-11 20:22:56 +01:00
2020-02-16 04:07:54 +01:00
# for id, obj in tracked_objects.items():
# color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
# draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
2020-01-11 20:22:56 +01:00
2020-02-16 04:07:54 +01:00
# # print a timestamp
# time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
# cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# # print fps
# cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# # convert to BGR
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# # encode the image into a jpg
# ret, jpg = cv2.imencode('.jpg', frame)
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# return jpg.tobytes()
2019-12-31 21:59:22 +01:00
2020-02-16 04:07:54 +01:00
# def get_current_frame_with_objects(self):
# frame_time = self.last_processed_frame
# if frame_time == self.cached_frame_with_objects['frame_time']:
# return self.cached_frame_with_objects['frame_bytes']
2019-03-30 03:02:40 +01:00
2020-02-16 04:07:54 +01:00
# frame_bytes = self.frame_with_objects(frame_time)
2020-02-16 04:07:54 +01:00
# self.cached_frame_with_objects = {
# 'frame_bytes': frame_bytes,
# 'frame_time': frame_time
# }
# return frame_bytes
def filtered(obj, objects_to_track, object_filters, mask):
object_name = obj[0]
if not object_name in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj[1]:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if mask[y_location][x_location] == [0]:
return True
return False
2020-02-16 04:07:54 +01:00
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, avg_wait):
print(f"Starting process for {name}: {os.getpid()}")
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
# combine tracked objects lists
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
object_filters = {}
for obj in objects_with_config:
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
take_frame = config.get('take_frame', 1)
# watchdog_timeout = config.get('watchdog_timeout', 300)
frame_shape = get_frame_shape(ffmpeg_input)
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
try:
sa.delete(name)
except:
pass
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
# load in the mask for object detection
if 'mask' in config:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None:
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector('/lab/labelmap.txt', detect_lock, detect_ready, frame_ready)
object_tracker = ObjectTracker(10)
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
print(" ".join(ffmpeg_cmd))
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
fps_tracker = EventsPerSecond()
fps_tracker.start()
while True:
# TODO: implement something to determine if it had to wait for a frame at all
# to determine if it might be behind and the buffer is filling up
start = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size)
duration = datetime.datetime.now().timestamp()-start
avg_wait.value = (avg_wait.value*9 + duration)/10
if not frame_bytes:
# TODO: restart the ffmpeg process and track number of restarts
break
# limit frame rate
frame_num += 1
if (frame_num % take_frame) != 0:
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
frame_time = datetime.datetime.now().timestamp()
# Store frame in numpy array
frame[:] = (np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape))
# look for motion
motion_boxes = motion_detector.detect(frame)
tracked_objects = object_tracker.tracked_objects.values()
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
2020-02-16 04:07:54 +01:00
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
# resize regions and detect
detections = []
for region in merged_regions:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
#########
# merge objects, check for clipped objects and look again up to N times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape): #obj['clipped']:
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
for d in refined_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
selected_objects.append(det)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# put the frame in the plasma store
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
# if (frames >= 700 and frames <= 1635) or (frames >= 2500):
# if (frames >= 300 and frames <= 600):
# if (frames >= 0):
# row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
# row2 = cv2.hconcat([frameDelta, thresh])
# cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
# # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
# for region in motion_regions:
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
# for region in object_regions:
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
# for region in merged_regions:
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
# for box in motion_boxes:
# cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
# for detection in detections:
# box = detection[2]
# draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
# for obj in object_tracker.tracked_objects.values():
# box = obj['box']
# draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
# cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
# cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
# cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
# break
# start a thread to publish object scores
# mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
# mqtt_publisher.start()
# create a watchdog thread for capture process
# self.watchdog = CameraWatchdog(self)