2019-01-26 15:02:59 +01:00
|
|
|
import os
|
|
|
|
import cv2
|
2019-02-09 15:51:11 +01:00
|
|
|
import imutils
|
2019-01-26 15:02:59 +01:00
|
|
|
import time
|
|
|
|
import datetime
|
|
|
|
import ctypes
|
|
|
|
import logging
|
|
|
|
import multiprocessing as mp
|
2019-02-04 13:18:49 +01:00
|
|
|
import threading
|
2019-01-26 15:02:59 +01:00
|
|
|
from contextlib import closing
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import label_map_util
|
|
|
|
from object_detection.utils import visualization_utils as vis_util
|
|
|
|
from flask import Flask, Response, make_response
|
|
|
|
|
|
|
|
RTSP_URL = os.getenv('RTSP_URL')
|
|
|
|
|
|
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
|
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
|
|
|
|
|
|
# List of the strings that is used to add correct label for each box.
|
|
|
|
PATH_TO_LABELS = '/label_map.pbtext'
|
|
|
|
|
|
|
|
# TODO: make dynamic?
|
|
|
|
NUM_CLASSES = 90
|
|
|
|
|
2019-02-09 15:51:11 +01:00
|
|
|
REGIONS = "300,0,0:300,300,0:300,600,0"
|
|
|
|
#REGIONS = os.getenv('REGIONS')
|
2019-02-02 04:38:13 +01:00
|
|
|
|
2019-02-04 13:18:49 +01:00
|
|
|
DETECTED_OBJECTS = []
|
|
|
|
|
2019-01-26 15:02:59 +01:00
|
|
|
# Loading label map
|
|
|
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
|
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
|
|
|
use_display_name=True)
|
|
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
|
2019-02-02 15:16:35 +01:00
|
|
|
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
|
2019-01-26 15:02:59 +01:00
|
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
2019-02-01 13:35:48 +01:00
|
|
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
2019-01-26 15:02:59 +01:00
|
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
|
|
|
|
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
|
|
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
|
|
|
|
|
|
|
# Each score represent how level of confidence for each of the objects.
|
|
|
|
# Score is shown on the result image, together with the class label.
|
|
|
|
scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
|
|
|
classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
|
|
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
|
|
|
|
|
|
|
# Actual detection.
|
|
|
|
(boxes, scores, classes, num_detections) = sess.run(
|
|
|
|
[boxes, scores, classes, num_detections],
|
|
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
|
|
|
|
|
|
# build an array of detected objects
|
|
|
|
objects = []
|
|
|
|
for index, value in enumerate(classes[0]):
|
2019-02-02 04:38:13 +01:00
|
|
|
score = scores[0, index]
|
|
|
|
if score > 0.1:
|
2019-02-02 15:16:35 +01:00
|
|
|
box = boxes[0, index].tolist()
|
|
|
|
box[0] = (box[0] * region_size) + region_y_offset
|
|
|
|
box[1] = (box[1] * region_size) + region_x_offset
|
|
|
|
box[2] = (box[2] * region_size) + region_y_offset
|
|
|
|
box[3] = (box[3] * region_size) + region_x_offset
|
|
|
|
objects += [value, scores[0, index]] + box
|
|
|
|
# only get the first 10 objects
|
2019-02-04 13:18:49 +01:00
|
|
|
if len(objects) == 60:
|
2019-02-02 15:16:35 +01:00
|
|
|
break
|
2019-01-26 15:02:59 +01:00
|
|
|
|
2019-02-02 04:38:13 +01:00
|
|
|
return objects
|
2019-01-26 15:02:59 +01:00
|
|
|
|
2019-02-04 13:18:49 +01:00
|
|
|
class ObjectParser(threading.Thread):
|
|
|
|
def __init__(self, object_arrays):
|
|
|
|
threading.Thread.__init__(self)
|
|
|
|
self._object_arrays = object_arrays
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
global DETECTED_OBJECTS
|
|
|
|
while True:
|
|
|
|
detected_objects = []
|
|
|
|
for object_array in self._object_arrays:
|
|
|
|
object_index = 0
|
|
|
|
while(object_index < 60 and object_array[object_index] > 0):
|
|
|
|
object_class = object_array[object_index]
|
|
|
|
detected_objects.append({
|
|
|
|
'name': str(category_index.get(object_class).get('name')),
|
|
|
|
'score': object_array[object_index+1],
|
|
|
|
'ymin': int(object_array[object_index+2]),
|
|
|
|
'xmin': int(object_array[object_index+3]),
|
|
|
|
'ymax': int(object_array[object_index+4]),
|
|
|
|
'xmax': int(object_array[object_index+5])
|
|
|
|
})
|
|
|
|
object_index += 6
|
|
|
|
DETECTED_OBJECTS = detected_objects
|
|
|
|
time.sleep(0.01)
|
|
|
|
|
2019-01-26 15:02:59 +01:00
|
|
|
def main():
|
2019-02-04 14:07:13 +01:00
|
|
|
# Parse selected regions
|
|
|
|
regions = []
|
|
|
|
for region_string in REGIONS.split(':'):
|
|
|
|
region_parts = region_string.split(',')
|
|
|
|
regions.append({
|
|
|
|
'size': int(region_parts[0]),
|
|
|
|
'x_offset': int(region_parts[1]),
|
|
|
|
'y_offset': int(region_parts[2])
|
|
|
|
})
|
2019-01-26 15:02:59 +01:00
|
|
|
# capture a single frame and check the frame shape so the correct array
|
|
|
|
# size can be allocated in memory
|
|
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
|
|
ret, frame = video.read()
|
|
|
|
if ret:
|
|
|
|
frame_shape = frame.shape
|
|
|
|
else:
|
|
|
|
print("Unable to capture video stream")
|
|
|
|
exit(1)
|
|
|
|
video.release()
|
|
|
|
|
2019-02-04 14:07:13 +01:00
|
|
|
shared_memory_objects = []
|
|
|
|
for region in regions:
|
|
|
|
shared_memory_objects.append({
|
|
|
|
# create shared value for storing the time the frame was captured
|
2019-02-09 14:32:49 +01:00
|
|
|
'frame_time': mp.Value('d', 0.0),
|
|
|
|
# shared value for motion detection signal (1 for motion 0 for no motion)
|
|
|
|
'motion_detected': mp.Value('i', 1),
|
|
|
|
# create shared array for storing 10 detected objects
|
2019-02-04 14:07:13 +01:00
|
|
|
# note: this must be a double even though the value you are storing
|
|
|
|
# is a float. otherwise it stops updating the value in shared
|
|
|
|
# memory. probably something to do with the size of the memory block
|
|
|
|
'output_array': mp.Array(ctypes.c_double, 6*10)
|
|
|
|
})
|
|
|
|
|
2019-01-26 15:02:59 +01:00
|
|
|
# compute the flattened array length from the array shape
|
|
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
2019-02-01 13:35:48 +01:00
|
|
|
# create shared array for storing the full frame image data
|
2019-01-26 15:02:59 +01:00
|
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
2019-02-02 04:38:13 +01:00
|
|
|
# shape current frame so it can be treated as an image
|
|
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
2019-01-26 15:02:59 +01:00
|
|
|
|
2019-02-04 14:07:13 +01:00
|
|
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
2019-01-26 15:02:59 +01:00
|
|
|
capture_process.daemon = True
|
|
|
|
|
2019-02-04 14:07:13 +01:00
|
|
|
detection_processes = []
|
|
|
|
for index, region in enumerate(regions):
|
|
|
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
2019-02-09 14:32:49 +01:00
|
|
|
shared_memory_objects[index]['output_array'],
|
|
|
|
shared_memory_objects[index]['frame_time'],
|
|
|
|
shared_memory_objects[index]['motion_detected'],
|
|
|
|
frame_shape,
|
2019-02-04 14:07:13 +01:00
|
|
|
region['size'], region['x_offset'], region['y_offset']))
|
|
|
|
detection_process.daemon = True
|
|
|
|
detection_processes.append(detection_process)
|
2019-01-26 15:02:59 +01:00
|
|
|
|
2019-02-09 15:51:11 +01:00
|
|
|
motion_processes = []
|
|
|
|
for index, region in enumerate(regions):
|
|
|
|
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
|
|
shared_memory_objects[index]['frame_time'],
|
|
|
|
shared_memory_objects[index]['motion_detected'],
|
|
|
|
frame_shape,
|
|
|
|
region['size'], region['x_offset'], region['y_offset']))
|
|
|
|
motion_process.daemon = True
|
|
|
|
motion_processes.append(motion_process)
|
|
|
|
|
2019-02-04 14:07:13 +01:00
|
|
|
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
2019-02-09 15:51:11 +01:00
|
|
|
# object_parser.start()
|
2019-02-04 13:18:49 +01:00
|
|
|
|
2019-01-26 15:02:59 +01:00
|
|
|
capture_process.start()
|
|
|
|
print("capture_process pid ", capture_process.pid)
|
2019-02-09 15:51:11 +01:00
|
|
|
# for detection_process in detection_processes:
|
|
|
|
# detection_process.start()
|
|
|
|
# print("detection_process pid ", detection_process.pid)
|
|
|
|
for motion_process in motion_processes:
|
|
|
|
motion_process.start()
|
|
|
|
print("motion_process pid ", motion_process.pid)
|
|
|
|
|
|
|
|
# app = Flask(__name__)
|
|
|
|
|
|
|
|
# @app.route('/')
|
|
|
|
# def index():
|
|
|
|
# # return a multipart response
|
|
|
|
# return Response(imagestream(),
|
|
|
|
# mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
|
# def imagestream():
|
|
|
|
# global DETECTED_OBJECTS
|
|
|
|
# while True:
|
|
|
|
# # max out at 5 FPS
|
|
|
|
# time.sleep(0.2)
|
|
|
|
# # make a copy of the current detected objects
|
|
|
|
# detected_objects = DETECTED_OBJECTS.copy()
|
|
|
|
# # make a copy of the current frame
|
|
|
|
# frame = frame_arr.copy()
|
|
|
|
# # convert to RGB for drawing
|
|
|
|
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
# # draw the bounding boxes on the screen
|
|
|
|
# for obj in DETECTED_OBJECTS:
|
|
|
|
# vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
|
# obj['ymin'],
|
|
|
|
# obj['xmin'],
|
|
|
|
# obj['ymax'],
|
|
|
|
# obj['xmax'],
|
|
|
|
# color='red',
|
|
|
|
# thickness=2,
|
|
|
|
# display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
|
# use_normalized_coordinates=False)
|
|
|
|
|
|
|
|
# for region in regions:
|
|
|
|
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
|
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
|
# (255,255,255), 2)
|
|
|
|
# # convert back to BGR
|
|
|
|
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
# # encode the image into a jpg
|
|
|
|
# ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
|
# yield (b'--frame\r\n'
|
|
|
|
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
|
|
|
|
# app.run(host='0.0.0.0', debug=False)
|
2019-01-26 15:02:59 +01:00
|
|
|
|
|
|
|
capture_process.join()
|
2019-02-09 15:51:11 +01:00
|
|
|
# for detection_process in detection_processes:
|
|
|
|
# detection_process.join()
|
|
|
|
for motion_process in motion_processes:
|
|
|
|
motion_process.join()
|
|
|
|
# object_parser.join()
|
2019-01-26 15:02:59 +01:00
|
|
|
|
|
|
|
# convert shared memory array into numpy array
|
|
|
|
def tonumpyarray(mp_arr):
|
|
|
|
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
|
|
|
|
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
|
|
# detection_process has consumed the current frame
|
2019-02-04 13:34:32 +01:00
|
|
|
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
2019-01-26 15:02:59 +01:00
|
|
|
# convert shared memory array into numpy and shape into image array
|
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
|
|
# start the video capture
|
|
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
|
|
# keep the buffer small so we minimize old data
|
|
|
|
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
|
|
|
|
|
|
|
while True:
|
|
|
|
# grab the frame, but dont decode it yet
|
|
|
|
ret = video.grab()
|
|
|
|
# snapshot the time the frame was grabbed
|
|
|
|
frame_time = datetime.datetime.now()
|
|
|
|
if ret:
|
|
|
|
# if the detection_process is ready for the next frame decode it
|
|
|
|
# otherwise skip this frame and move onto the next one
|
2019-02-04 13:34:32 +01:00
|
|
|
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
2019-01-26 15:02:59 +01:00
|
|
|
# go ahead and decode the current frame
|
|
|
|
ret, frame = video.retrieve()
|
|
|
|
if ret:
|
|
|
|
arr[:] = frame
|
2019-02-04 13:34:32 +01:00
|
|
|
# signal to the detection_processes by setting the shared_frame_time
|
|
|
|
for shared_frame_time in shared_frame_times:
|
|
|
|
shared_frame_time.value = frame_time.timestamp()
|
2019-02-04 13:18:49 +01:00
|
|
|
else:
|
|
|
|
# sleep a little to reduce CPU usage
|
|
|
|
time.sleep(0.01)
|
2019-01-26 15:02:59 +01:00
|
|
|
|
|
|
|
video.release()
|
|
|
|
|
|
|
|
# do the actual object detection
|
2019-02-09 14:32:49 +01:00
|
|
|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
2019-01-26 15:02:59 +01:00
|
|
|
# shape shared input array into frame for processing
|
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
|
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
|
|
|
detection_graph = tf.Graph()
|
|
|
|
with detection_graph.as_default():
|
|
|
|
od_graph_def = tf.GraphDef()
|
|
|
|
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
|
|
|
serialized_graph = fid.read()
|
|
|
|
od_graph_def.ParseFromString(serialized_graph)
|
|
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
|
|
sess = tf.Session(graph=detection_graph)
|
|
|
|
|
|
|
|
no_frames_available = -1
|
|
|
|
while True:
|
2019-02-09 14:32:49 +01:00
|
|
|
# if there is no motion detected
|
|
|
|
if shared_motion.value == 0:
|
|
|
|
time.sleep(0.01)
|
|
|
|
continue
|
|
|
|
|
2019-01-26 15:02:59 +01:00
|
|
|
# if there isnt a frame ready for processing
|
|
|
|
if shared_frame_time.value == 0.0:
|
|
|
|
# save the first time there were no frames available
|
|
|
|
if no_frames_available == -1:
|
|
|
|
no_frames_available = datetime.datetime.now().timestamp()
|
|
|
|
# if there havent been any frames available in 30 seconds,
|
|
|
|
# sleep to avoid using so much cpu if the camera feed is down
|
|
|
|
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
|
|
|
time.sleep(1)
|
|
|
|
print("sleeping because no frames have been available in a while")
|
2019-02-01 13:35:10 +01:00
|
|
|
else:
|
|
|
|
# rest a little bit to avoid maxing out the CPU
|
|
|
|
time.sleep(0.01)
|
2019-01-26 15:02:59 +01:00
|
|
|
continue
|
|
|
|
|
|
|
|
# we got a valid frame, so reset the timer
|
|
|
|
no_frames_available = -1
|
|
|
|
|
|
|
|
# if the frame is more than 0.5 second old, discard it
|
|
|
|
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
|
|
|
# signal that we need a new frame
|
|
|
|
shared_frame_time.value = 0.0
|
2019-02-01 13:35:10 +01:00
|
|
|
# rest a little bit to avoid maxing out the CPU
|
|
|
|
time.sleep(0.01)
|
2019-01-26 15:02:59 +01:00
|
|
|
continue
|
|
|
|
|
2019-02-02 15:16:35 +01:00
|
|
|
# make a copy of the cropped frame
|
|
|
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
2019-01-26 15:02:59 +01:00
|
|
|
frame_time = shared_frame_time.value
|
|
|
|
# signal that the frame has been used so a new one will be ready
|
|
|
|
shared_frame_time.value = 0.0
|
|
|
|
|
|
|
|
# convert to RGB
|
2019-02-01 13:35:48 +01:00
|
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
2019-01-26 15:02:59 +01:00
|
|
|
# do the object detection
|
2019-02-02 15:16:35 +01:00
|
|
|
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
|
2019-02-02 04:38:13 +01:00
|
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
2019-01-26 15:02:59 +01:00
|
|
|
|
2019-02-09 15:51:11 +01:00
|
|
|
# do the actual object detection
|
|
|
|
def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
|
|
# shape shared input array into frame for processing
|
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
|
|
no_frames_available = -1
|
|
|
|
avg_frame = None
|
|
|
|
last_motion = -1
|
|
|
|
while True:
|
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
# if it has been 30 seconds since the last motion, clear the flag
|
|
|
|
if last_motion > 0 and (now - last_motion) > 30:
|
|
|
|
last_motion = -1
|
|
|
|
shared_motion.value = 0
|
|
|
|
print("motion cleared")
|
|
|
|
# if there isnt a frame ready for processing
|
|
|
|
if shared_frame_time.value == 0.0:
|
|
|
|
# save the first time there were no frames available
|
|
|
|
if no_frames_available == -1:
|
|
|
|
no_frames_available = now
|
|
|
|
# if there havent been any frames available in 30 seconds,
|
|
|
|
# sleep to avoid using so much cpu if the camera feed is down
|
|
|
|
if no_frames_available > 0 and (now - no_frames_available) > 30:
|
|
|
|
time.sleep(1)
|
|
|
|
print("sleeping because no frames have been available in a while")
|
|
|
|
else:
|
|
|
|
# rest a little bit to avoid maxing out the CPU
|
|
|
|
time.sleep(0.01)
|
|
|
|
continue
|
|
|
|
|
|
|
|
# we got a valid frame, so reset the timer
|
|
|
|
no_frames_available = -1
|
|
|
|
|
|
|
|
# if the frame is more than 0.5 second old, discard it
|
|
|
|
if (now - shared_frame_time.value) > 0.5:
|
|
|
|
# signal that we need a new frame
|
|
|
|
shared_frame_time.value = 0.0
|
|
|
|
# rest a little bit to avoid maxing out the CPU
|
|
|
|
time.sleep(0.01)
|
|
|
|
continue
|
|
|
|
|
|
|
|
# make a copy of the cropped frame
|
|
|
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
|
frame_time = shared_frame_time.value
|
|
|
|
# signal that the frame has been used so a new one will be ready
|
|
|
|
shared_frame_time.value = 0.0
|
|
|
|
|
|
|
|
# convert to grayscale
|
|
|
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
# convert to uint8
|
|
|
|
gray = (gray/256).astype('uint8')
|
|
|
|
# apply gaussian blur
|
|
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
|
|
|
|
|
|
if avg_frame is None:
|
|
|
|
avg_frame = gray.copy().astype("float")
|
|
|
|
continue
|
|
|
|
|
|
|
|
# look at the delta from the avg_frame
|
|
|
|
cv2.accumulateWeighted(gray, avg_frame, 0.5)
|
|
|
|
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
|
|
|
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours
|
|
|
|
# on thresholded image
|
|
|
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
|
|
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
|
|
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
|
|
|
|
# loop over the contours
|
|
|
|
for c in cnts:
|
|
|
|
# if the contour is too small, ignore it
|
|
|
|
if cv2.contourArea(c) < 50:
|
|
|
|
continue
|
|
|
|
|
|
|
|
print("motion_detected")
|
|
|
|
last_motion = now
|
|
|
|
shared_motion.value = 1
|
|
|
|
|
|
|
|
# compute the bounding box for the contour, draw it on the frame,
|
|
|
|
# and update the text
|
|
|
|
(x, y, w, h) = cv2.boundingRect(c)
|
|
|
|
cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
|
|
cv2.imwrite("motion%d.png" % frame_time, cropped_frame)
|
2019-01-26 15:02:59 +01:00
|
|
|
if __name__ == '__main__':
|
|
|
|
mp.freeze_support()
|
|
|
|
main()
|