blakeblackshear.frigate/frigate/video.py

356 lines
14 KiB
Python
Raw Normal View History

2019-03-30 02:49:27 +01:00
import os
2019-02-26 03:27:02 +01:00
import time
import datetime
import cv2
import queue
import threading
2019-03-30 02:49:27 +01:00
import ctypes
import multiprocessing as mp
import subprocess as sp
2019-05-10 13:19:39 +02:00
import numpy as np
2020-02-16 04:07:54 +01:00
import hashlib
import pyarrow.plasma as plasma
import SharedArray as sa
2020-01-11 20:22:56 +01:00
import copy
2019-12-31 21:59:22 +01:00
import itertools
import json
from collections import defaultdict
2020-02-16 15:49:43 +01:00
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
2020-02-16 04:07:54 +01:00
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
2019-02-26 03:27:02 +01:00
2019-12-08 14:03:58 +01:00
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
2019-03-30 02:49:27 +01:00
2019-12-08 14:03:58 +01:00
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
def filtered(obj, objects_to_track, object_filters, mask):
object_name = obj[0]
if not object_name in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj[1]:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if mask[y_location][x_location] == [0]:
return True
return False
2020-02-16 04:07:54 +01:00
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
2020-02-16 04:07:54 +01:00
print(f"Starting process for {name}: {os.getpid()}")
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
# combine tracked objects lists
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
object_filters = {}
for obj in objects_with_config:
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
2020-02-18 12:55:06 +01:00
expected_fps = config['fps']
2020-02-16 04:07:54 +01:00
take_frame = config.get('take_frame', 1)
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
2020-02-16 04:07:54 +01:00
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
try:
sa.delete(name)
except:
pass
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
# load in the mask for object detection
if 'mask' in config:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None:
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
2020-02-18 13:11:02 +01:00
object_detector = RemoteObjectDetector('/labelmap.txt', detect_lock, detect_ready, frame_ready)
2020-02-16 04:07:54 +01:00
object_tracker = ObjectTracker(10)
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
print(" ".join(ffmpeg_cmd))
2020-02-25 03:05:30 +01:00
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
2019-03-30 02:49:27 +01:00
2020-02-16 04:07:54 +01:00
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
2020-02-22 14:36:25 +01:00
avg_wait = 0.0
2020-02-16 04:07:54 +01:00
fps_tracker = EventsPerSecond()
2020-02-16 15:49:14 +01:00
skipped_fps_tracker = EventsPerSecond()
2020-02-16 04:07:54 +01:00
fps_tracker.start()
2020-02-16 15:49:14 +01:00
skipped_fps_tracker.start()
object_detector.fps.start()
2020-02-16 04:07:54 +01:00
while True:
2020-02-22 14:36:25 +01:00
start = datetime.datetime.now().timestamp()
2020-02-16 04:07:54 +01:00
frame_bytes = ffmpeg_process.stdout.read(frame_size)
2020-02-22 14:36:25 +01:00
duration = datetime.datetime.now().timestamp()-start
avg_wait = (avg_wait*99+duration)/100
2020-02-16 04:07:54 +01:00
if not frame_bytes:
break
# limit frame rate
frame_num += 1
if (frame_num % take_frame) != 0:
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
2020-02-16 04:07:54 +01:00
frame_time = datetime.datetime.now().timestamp()
# Store frame in numpy array
frame[:] = (np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape))
# look for motion
motion_boxes = motion_detector.detect(frame)
2020-02-22 14:36:25 +01:00
# skip object detection if we are below the min_fps and wait time is less than half the average
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
2020-02-16 15:49:14 +01:00
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()
continue
skipped_fps.value = skipped_fps_tracker.eps()
2020-02-16 04:07:54 +01:00
tracked_objects = object_tracker.tracked_objects.values()
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
2020-02-16 04:07:54 +01:00
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
# resize regions and detect
detections = []
for region in merged_regions:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
#########
# merge objects, check for clipped objects and look again up to N times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape): #obj['clipped']:
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
for d in refined_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
selected_objects.append(det)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# put the frame in the plasma store
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))