blakeblackshear.frigate/frigate/objects.py

408 lines
18 KiB
Python
Raw Normal View History

2019-02-26 03:27:02 +01:00
import time
import datetime
import threading
import cv2
import prctl
2019-12-31 21:59:22 +01:00
import itertools
2020-01-11 20:22:56 +01:00
import copy
import numpy as np
2020-01-11 20:22:56 +01:00
import multiprocessing as mp
from collections import defaultdict
2019-12-31 21:59:22 +01:00
from scipy.spatial import distance as dist
2020-01-04 19:00:29 +01:00
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
2019-02-26 03:27:02 +01:00
class ObjectCleaner(threading.Thread):
def __init__(self, camera):
2019-02-26 03:27:02 +01:00
threading.Thread.__init__(self)
self.camera = camera
2019-02-26 03:27:02 +01:00
def run(self):
prctl.set_name("ObjectCleaner")
2019-02-26 03:27:02 +01:00
while True:
2019-03-27 12:17:00 +01:00
# wait a bit before checking for expired frames
time.sleep(0.2)
for frame_time in list(self.camera.detected_objects.keys()).copy():
if not frame_time in self.camera.frame_cache:
del self.camera.detected_objects[frame_time]
2020-01-11 20:22:56 +01:00
2020-01-12 14:14:42 +01:00
objects_deregistered = False
2020-01-11 20:22:56 +01:00
with self.camera.object_tracker.tracked_objects_lock:
now = datetime.datetime.now().timestamp()
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
# if the object is more than 10 seconds old
# and not in the most recent frame, deregister
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
self.camera.object_tracker.deregister(id)
2020-01-12 14:14:42 +01:00
objects_deregistered = True
if objects_deregistered:
with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all()
2019-12-23 13:40:48 +01:00
class DetectedObjectsProcessor(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame = self.camera.detected_objects_queue.get()
objects = frame['detected_objects']
for raw_obj in objects:
name = str(LABELS[raw_obj.label_id])
2019-12-31 21:59:22 +01:00
if not name in self.camera.objects_to_track:
continue
2019-12-23 13:40:48 +01:00
obj = {
'name': name,
2019-12-31 21:59:22 +01:00
'score': float(raw_obj.score),
'box': {
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
},
'region': {
'xmin': frame['x_offset'],
'ymin': frame['y_offset'],
'xmax': frame['x_offset']+frame['size'],
'ymax': frame['y_offset']+frame['size']
},
2019-12-23 13:40:48 +01:00
'frame_time': frame['frame_time'],
'region_id': frame['region_id']
}
2019-12-31 21:59:22 +01:00
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
obj['clipped'] = False
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
obj['clipped'] = True
2019-12-23 13:40:48 +01:00
# Compute the area
2019-12-31 21:59:22 +01:00
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
2019-12-23 13:40:48 +01:00
2019-12-31 21:59:22 +01:00
self.camera.detected_objects[frame['frame_time']].append(obj)
with self.camera.regions_in_process_lock:
if frame['frame_time'] in self.camera.regions_in_process:
self.camera.regions_in_process[frame['frame_time']] -= 1
2020-01-02 13:32:02 +01:00
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
2019-12-31 21:59:22 +01:00
if self.camera.regions_in_process[frame['frame_time']] == 0:
del self.camera.regions_in_process[frame['frame_time']]
# print(f"{frame['frame_time']} no remaining regions")
self.camera.finished_frame_queue.put(frame['frame_time'])
else:
2019-12-31 21:59:22 +01:00
self.camera.finished_frame_queue.put(frame['frame_time'])
2019-12-23 13:40:48 +01:00
2019-12-31 21:59:22 +01:00
# Thread that checks finished frames for clipped objects and sends back
# for processing if needed
class RegionRefiner(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.finished_frame_queue.get()
detected_objects = self.camera.detected_objects[frame_time].copy()
2019-12-31 21:59:22 +01:00
# print(f"{frame_time} finished")
2020-01-07 03:36:04 +01:00
# group by name
2020-01-09 13:50:53 +01:00
detected_object_groups = defaultdict(lambda: [])
2020-01-07 03:36:04 +01:00
for obj in detected_objects:
detected_object_groups[obj['name']].append(obj)
2019-12-31 21:59:22 +01:00
2020-01-02 14:38:50 +01:00
look_again = False
selected_objects = []
for group in detected_object_groups.values():
2020-01-07 03:36:04 +01:00
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
for o in group]
confidences = [o['score'] for o in group]
2020-01-07 03:36:04 +01:00
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
selected_objects.append(obj)
if obj['clipped']:
box = obj['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
with self.camera.regions_in_process_lock:
if not frame_time in self.camera.regions_in_process:
self.camera.regions_in_process[frame_time] = 1
else:
self.camera.regions_in_process[frame_time] += 1
# add it to the queue
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
self.camera.dynamic_region_fps.update()
look_again = True
2019-12-31 21:59:22 +01:00
2020-01-02 14:38:50 +01:00
# if we are looking again, then this frame is not ready for processing
if look_again:
# remove the clipped objects
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
2019-12-31 21:59:22 +01:00
continue
2020-01-02 13:32:02 +01:00
# filter objects based on camera settings
selected_objects = [o for o in selected_objects if not self.filtered(o)]
2020-01-02 14:38:50 +01:00
self.camera.detected_objects[frame_time] = selected_objects
2019-12-31 21:59:22 +01:00
# print(f"{frame_time} is actually finished")
# keep adding frames to the refined queue as long as they are finished
with self.camera.regions_in_process_lock:
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
2020-01-02 14:38:50 +01:00
self.camera.last_processed_frame = self.camera.frame_queue.get()
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
def filtered(self, obj):
object_name = obj['name']
if object_name in self.camera.object_filters:
obj_settings = self.camera.object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
2020-01-09 13:50:53 +01:00
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.camera.mask[y_location][x_location] == [0]:
return True
return False
2019-12-31 21:59:22 +01:00
2020-01-02 13:32:02 +01:00
def has_overlap(self, new_obj, obj, overlap=.7):
2019-12-31 21:59:22 +01:00
# compute intersection rectangle with existing object and new objects region
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# compute intersection rectangle with new object and existing objects region
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# compute iou for the two intersection rectangles that were just computed
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# if intersection is greater than overlap
if iou > overlap:
return True
else:
return False
def find_group(self, new_obj, groups):
for index, group in enumerate(groups):
for obj in group:
if self.has_overlap(new_obj, obj):
return index
return None
class ObjectTracker(threading.Thread):
def __init__(self, camera, max_disappeared):
threading.Thread.__init__(self)
self.camera = camera
self.tracked_objects = {}
2020-01-11 20:22:56 +01:00
self.tracked_objects_lock = mp.Lock()
self.most_recent_frame_time = None
2019-12-31 21:59:22 +01:00
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.refined_frame_queue.get()
2020-01-11 20:22:56 +01:00
with self.tracked_objects_lock:
self.match_and_update(self.camera.detected_objects[frame_time])
self.most_recent_frame_time = frame_time
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
if len(self.tracked_objects) > 0:
with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all()
2019-12-31 21:59:22 +01:00
def register(self, index, obj):
id = "{}-{}".format(str(obj['frame_time']), index)
2020-01-09 13:52:28 +01:00
obj['id'] = id
obj['top_score'] = obj['score']
self.add_history(obj)
2019-12-31 21:59:22 +01:00
self.tracked_objects[id] = obj
def deregister(self, id):
del self.tracked_objects[id]
def update(self, id, new_obj):
2020-01-08 03:43:25 +01:00
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
2019-12-31 21:59:22 +01:00
def match_and_update(self, new_objects):
if len(new_objects) == 0:
return
2020-01-09 13:52:28 +01:00
# group by name
new_object_groups = defaultdict(lambda: [])
2019-12-31 21:59:22 +01:00
for obj in new_objects:
2020-01-09 13:52:28 +01:00
new_object_groups[obj['name']].append(obj)
2019-12-31 21:59:22 +01:00
2020-01-09 13:52:28 +01:00
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
2020-01-11 20:22:56 +01:00
# compute centroids of new objects
2020-01-09 13:52:28 +01:00
for obj in group:
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
return
new_centroids = np.array([o['centroid'] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
2019-12-31 21:59:22 +01:00
2020-01-09 13:52:28 +01:00
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
2019-12-31 21:59:22 +01:00
objectID = current_ids[row]
2020-01-11 20:22:56 +01:00
self.update(objectID, group[col])
2020-01-09 13:52:28 +01:00
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
2020-01-11 20:22:56 +01:00
# compute the column index we have NOT yet examined
2020-01-09 13:52:28 +01:00
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
2020-01-11 20:22:56 +01:00
# if the number of input centroids is greater
2020-01-09 13:52:28 +01:00
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
2020-01-11 20:22:56 +01:00
# if D.shape[0] < D.shape[1]:
for col in unusedCols:
self.register(col, group[col])
2019-12-31 21:59:22 +01:00
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
self.best_objects = {}
self.best_frames = {}
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# wait until objects have been tracked
with self.camera.objects_tracked:
self.camera.objects_tracked.wait()
2020-01-11 20:22:56 +01:00
# make a copy of tracked objects
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
2020-01-11 20:22:56 +01:00
for obj in tracked_objects:
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
2020-01-11 20:22:56 +01:00
self.best_objects[obj['name']] = copy.deepcopy(obj)
else:
2020-01-11 20:22:56 +01:00
self.best_objects[obj['name']] = copy.deepcopy(obj)
2019-03-30 13:58:31 +01:00
for name, obj in self.best_objects.items():
if obj['frame_time'] in self.camera.frame_cache:
best_frame = self.camera.frame_cache[obj['frame_time']]
2019-12-31 21:59:22 +01:00
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = best_frame