blakeblackshear.frigate/frigate/video.py

343 lines
13 KiB
Python
Raw Normal View History

2019-03-30 02:49:27 +01:00
import os
2019-02-26 03:27:02 +01:00
import time
import datetime
import cv2
import threading
2019-03-30 02:49:27 +01:00
import ctypes
import multiprocessing as mp
import subprocess as sp
2019-05-10 13:19:39 +02:00
import numpy as np
from . util import tonumpyarray, draw_box_with_label
2019-03-30 02:49:27 +01:00
from . object_detection import FramePrepper
2019-03-30 13:58:31 +01:00
from . objects import ObjectCleaner, BestPersonFrame
2019-03-30 02:49:27 +01:00
from . mqtt import MqttObjectPublisher
2019-02-26 03:27:02 +01:00
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
2019-03-27 12:17:00 +01:00
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
def run(self):
frame_time = 0.0
while True:
2019-03-27 12:17:00 +01:00
now = datetime.datetime.now().timestamp()
# wait for a frame
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# lock and make a copy of the frame
with self.frame_lock:
frame = self.shared_frame.copy()
frame_time = self.frame_time.value
# add the frame to recent frames
self.recent_frames[frame_time] = frame
2019-03-27 12:17:00 +01:00
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
for k in stored_frame_times:
if (now - k) > 2:
del self.recent_frames[k]
2019-03-30 02:49:27 +01:00
2019-12-08 14:03:58 +01:00
def get_frame_shape(source):
2019-03-30 02:49:27 +01:00
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
2019-12-08 14:03:58 +01:00
video = cv2.VideoCapture(source)
2019-03-30 02:49:27 +01:00
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
2019-12-08 14:03:58 +01:00
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
2019-03-30 02:49:27 +01:00
class CameraWatchdog(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
while True:
# wait a bit before checking
time.sleep(10)
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 10:
print("last frame is more than 10 seconds old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
# Thread to read the stdout of the ffmpeg process and update the current frame
class CameraCapture(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
print("ffmpeg process is not running. exiting capture thread...")
break
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
if len(raw_image) == 0:
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
if (frame_num % self.camera.take_frame) != 0:
continue
with self.camera.frame_lock:
self.camera.frame_time.value = datetime.datetime.now().timestamp()
self.camera.current_frame[:] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
2019-03-30 02:49:27 +01:00
class Camera:
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
2019-12-08 14:03:58 +01:00
self.ffmpeg_input = get_ffmpeg_input(self.config['ffmpeg_input'])
2019-07-02 04:17:44 +02:00
self.take_frame = self.config.get('take_frame', 1)
self.ffmpeg_log_level = self.config.get('ffmpeg_log_level', 'panic')
self.ffmpeg_hwaccel_args = self.config.get('ffmpeg_hwaccel_args', [])
self.ffmpeg_input_args = self.config.get('ffmpeg_input_args', [
'-avoid_negative_ts', 'make_zero',
'-fflags', 'nobuffer',
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1'
])
self.ffmpeg_output_args = self.config.get('ffmpeg_output_args', [
'-f', 'rawvideo',
'-pix_fmt', 'rgb24'
])
2019-03-30 02:49:27 +01:00
self.regions = self.config['regions']
2019-12-08 14:03:58 +01:00
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
2019-03-30 02:49:27 +01:00
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# create a numpy array for the current frame in initialize to zeros
self.current_frame = np.zeros(self.frame_shape, np.uint8)
2019-03-30 02:49:27 +01:00
# create shared value for storing the frame_time
self.frame_time = mp.Value('d', 0.0)
2019-03-30 02:49:27 +01:00
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
self.ffmpeg_process = None
self.capture_thread = None
2019-03-30 02:49:27 +01:00
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for region in self.config['regions']:
# set a default threshold of 0.5 if not defined
if not 'threshold' in region:
region['threshold'] = 0.5
if not isinstance(region['threshold'], float):
print('Threshold is not a float. Setting to 0.5 default.')
region['threshold'] = 0.5
2019-03-30 02:49:27 +01:00
self.detection_prep_threads.append(FramePrepper(
self.name,
self.current_frame,
self.frame_time,
2019-03-30 02:49:27 +01:00
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'], region['threshold'],
2019-03-30 02:49:27 +01:00
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
2019-03-30 02:49:27 +01:00
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
# start a thread to store the highest scoring recent person frame
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_person_frame.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_person_frame)
2019-03-30 02:49:27 +01:00
mqtt_publisher.start()
# create a watchdog thread for capture process
self.watchdog = CameraWatchdog(self)
# load in the mask for person detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
2019-07-13 18:31:18 +02:00
else:
self.mask = None
if self.mask is None:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start_or_restart_capture(self):
if not self.ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
self.ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.wait()
print("Waiting for the capture thread to exit...")
self.capture_thread.join()
self.ffmpeg_process = None
self.capture_thread = None
2019-12-08 14:03:58 +01:00
# create the process to capture frames from the input stream and store in a shared array
print("Creating a new ffmpeg process...")
self.start_ffmpeg()
print("Creating a new capture thread...")
self.capture_thread = CameraCapture(self)
print("Starting a new capture thread...")
self.capture_thread.start()
def start_ffmpeg(self):
ffmpeg_global_args = [
'-hide_banner', '-loglevel', self.ffmpeg_log_level
]
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
self.ffmpeg_hwaccel_args +
self.ffmpeg_input_args +
2019-12-08 14:03:58 +01:00
['-i', self.ffmpeg_input] +
self.ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
2019-03-30 02:49:27 +01:00
def start(self):
self.start_or_restart_capture()
2019-03-30 02:49:27 +01:00
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
self.watchdog.start()
2019-03-30 02:49:27 +01:00
def join(self):
self.capture_thread.join()
2019-03-30 02:49:27 +01:00
def get_capture_pid(self):
return self.ffmpeg_process.pid
2019-03-30 02:49:27 +01:00
def add_objects(self, objects):
if len(objects) == 0:
return
for obj in objects:
# Store object area to use in bounding box labels
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
2019-03-30 02:49:27 +01:00
if obj['name'] == 'person':
# find the matching region
region = None
for r in self.regions:
if (
obj['xmin'] >= r['x_offset'] and
obj['ymin'] >= r['y_offset'] and
obj['xmax'] <= r['x_offset']+r['size'] and
obj['ymax'] <= r['y_offset']+r['size']
):
region = r
break
# if the min person area is larger than the
# detected person, don't add it to detected objects
2019-07-13 18:31:18 +02:00
if region and 'min_person_area' in region and region['min_person_area'] > obj['area']:
2019-03-30 02:49:27 +01:00
continue
2019-12-08 14:16:30 +01:00
# if the detected person is larger than the
# max person area, don't add it to detected objects
if region and 'max_person_area' in region and region['max_person_area'] < obj['area']:
continue
# compute the coordinates of the person and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# if the person is in a masked location, continue
if self.mask[y_location][x_location] == [0]:
continue
2019-03-30 02:49:27 +01:00
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best_person(self):
return self.best_person_frame.best_frame
2019-03-30 03:02:40 +01:00
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
2019-12-08 15:55:19 +01:00
frame_time = self.frame_time.value
2019-03-30 03:02:40 +01:00
# draw the bounding boxes on the screen
for obj in detected_objects:
label = "{}: {}% {}".format(obj['name'],int(obj['score']*100),int(obj['area']))
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], label)
2019-03-30 03:02:40 +01:00
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
2019-12-08 15:55:19 +01:00
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
2019-03-30 03:02:40 +01:00
# convert to BGR
2019-03-30 03:02:40 +01:00
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return frame
2019-03-30 02:49:27 +01:00