blakeblackshear.frigate/frigate/edgetpu.py

183 lines
6.9 KiB
Python
Raw Normal View History

2020-02-16 04:07:54 +01:00
import os
import datetime
import hashlib
2020-02-09 14:39:24 +01:00
import multiprocessing as mp
from abc import ABC, abstractmethod
2020-02-09 14:39:24 +01:00
import numpy as np
import pyarrow.plasma as plasma
2020-02-09 14:39:24 +01:00
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, listen
2020-02-09 14:39:24 +01:00
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, 'r', encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(' ', maxsplit=1)[0].isdigit():
pairs = [line.split(' ', maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold = .4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, labels=None):
2020-09-13 14:46:38 +02:00
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
device_config = {"device": "usb"}
if not tf_device is None:
device_config = {"device": tf_device}
2020-02-09 14:39:24 +01:00
edge_tpu_delegate = None
try:
print(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
print("TPU found")
2020-02-09 14:39:24 +01:00
except ValueError:
try:
print(f"Attempting to load TPU as pci:0")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', {"device": "pci:0"})
print("PCIe TPU found")
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
2020-02-09 14:39:24 +01:00
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
2020-02-18 12:55:06 +01:00
model_path='/cpu_model.tflite')
2020-02-09 14:39:24 +01:00
else:
self.interpreter = tflite.Interpreter(
2020-02-18 12:55:06 +01:00
model_path='/edgetpu_model.tflite',
2020-02-09 14:39:24 +01:00
experimental_delegates=[edge_tpu_delegate])
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect(self, tensor_input, threshold=.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
2020-09-13 14:46:38 +02:00
self.fps.update()
return detections
2020-02-09 14:39:24 +01:00
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
detections = np.zeros((20,6), np.float32)
for i, score in enumerate(scores):
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
return detections
def run_detector(detection_queue, avg_speed, start, tf_device):
print(f"Starting detection process: {os.getpid()}")
listen()
plasma_client = plasma.connect("/tmp/plasma")
object_detector = LocalObjectDetector(tf_device=tf_device)
2020-02-09 14:39:24 +01:00
while True:
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
2020-02-09 14:39:24 +01:00
if input_frame is plasma.ObjectNotAvailable:
continue
2020-02-09 14:39:24 +01:00
# detect and put the output in the plasma store
start.value = datetime.datetime.now().timestamp()
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
duration = datetime.datetime.now().timestamp()-start.value
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, tf_device=None):
2020-08-02 15:46:36 +02:00
self.detection_queue = mp.Queue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.tf_device = tf_device
self.start_or_restart()
2020-02-09 14:39:24 +01:00
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start, self.tf_device))
2020-02-09 14:39:24 +01:00
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue):
2020-02-09 14:39:24 +01:00
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.plasma_client = plasma.connect("/tmp/plasma")
self.detection_queue = detection_queue
2020-02-09 14:39:24 +01:00
def detect(self, tensor_input, threshold=.4):
detections = []
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
if raw_detections is plasma.ObjectNotAvailable:
self.plasma_client.delete([object_id_frame])
return detections
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
self.fps.update()
return detections