blakeblackshear.frigate/frigate/video.py

860 lines
28 KiB
Python
Raw Normal View History

2019-02-26 03:27:02 +01:00
import datetime
2020-11-04 04:26:39 +01:00
import logging
2019-03-30 02:49:27 +01:00
import multiprocessing as mp
import os
2020-11-04 13:31:25 +01:00
import queue
2020-11-29 23:19:59 +01:00
import signal
2021-10-31 17:12:44 +01:00
import subprocess as sp
2020-11-04 13:31:25 +01:00
import threading
import time
from collections import defaultdict
2020-11-04 13:31:25 +01:00
import cv2
import numpy as np
2021-10-31 17:12:44 +01:00
from setproctitle import setproctitle
2020-11-04 13:31:25 +01:00
from frigate.config import CameraConfig, DetectConfig, ModelConfig
from frigate.const import (
ALL_ATTRIBUTE_LABELS,
ATTRIBUTE_LABEL_MAP,
CACHE_DIR,
REQUEST_REGION_GRID,
)
2020-12-04 13:59:03 +01:00
from frigate.log import LogPipe
2020-02-16 04:07:54 +01:00
from frigate.motion import MotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
from frigate.object_detection import RemoteObjectDetector
2023-05-31 16:12:43 +02:00
from frigate.track import ObjectTracker
from frigate.track.norfair_tracker import NorfairTracker
from frigate.types import PTZMetricsTypes
from frigate.util.builtin import EventsPerSecond, get_tomorrow_at_2
from frigate.util.image import (
2021-02-17 14:23:32 +01:00
FrameManager,
SharedMemoryFrameManager,
draw_box_with_label,
)
from frigate.util.object import (
box_inside,
create_tensor_input,
get_cluster_candidates,
get_cluster_region,
get_cluster_region_from_grid,
get_consolidated_object_detections,
get_min_region_size,
get_startup_regions,
inside_any,
intersects_any,
is_object_filtered,
2021-02-17 14:23:32 +01:00
)
from frigate.util.services import listen
2019-02-26 03:27:02 +01:00
2020-11-04 04:26:39 +01:00
logger = logging.getLogger(__name__)
2021-02-17 14:23:32 +01:00
2020-12-04 13:59:03 +01:00
def stop_ffmpeg(ffmpeg_process, logger):
2020-11-29 23:19:59 +01:00
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
2021-02-17 14:23:32 +01:00
def start_or_restart_ffmpeg(
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
):
if ffmpeg_process is not None:
2020-12-04 13:59:03 +01:00
stop_ffmpeg(ffmpeg_process, logger)
2020-11-29 22:55:53 +01:00
if frame_size is None:
2021-02-17 14:23:32 +01:00
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.DEVNULL,
stderr=logpipe,
stdin=sp.DEVNULL,
start_new_session=True,
)
2020-11-29 22:55:53 +01:00
else:
2021-02-17 14:23:32 +01:00
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.PIPE,
stderr=logpipe,
stdin=sp.DEVNULL,
bufsize=frame_size * 10,
start_new_session=True,
)
return process
2021-02-17 14:23:32 +01:00
def capture_frames(
ffmpeg_process,
camera_name,
frame_shape,
frame_manager: FrameManager,
frame_queue,
fps: mp.Value,
skipped_fps: mp.Value,
current_frame: mp.Value,
stop_event: mp.Event,
2021-02-17 14:23:32 +01:00
):
2020-11-03 15:15:58 +01:00
frame_size = frame_shape[0] * frame_shape[1]
2020-10-25 16:05:21 +01:00
frame_rate = EventsPerSecond()
2020-10-26 13:59:22 +01:00
frame_rate.start()
2020-10-25 16:05:21 +01:00
skipped_eps = EventsPerSecond()
skipped_eps.start()
while True:
2020-10-25 16:05:21 +01:00
fps.value = frame_rate.eps()
skipped_fps.value = skipped_eps.eps()
2020-09-07 19:17:42 +02:00
current_frame.value = datetime.datetime.now().timestamp()
2020-10-24 18:36:04 +02:00
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
2020-12-12 16:12:15 +01:00
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception:
# shutdown has been initiated
if stop_event.is_set():
break
2022-02-06 15:46:41 +01:00
logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.")
2020-12-12 16:12:15 +01:00
if ffmpeg_process.poll() is not None:
2022-02-06 15:46:41 +01:00
logger.error(
2021-02-17 14:23:32 +01:00
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
)
2020-12-12 16:12:15 +01:00
frame_manager.delete(frame_name)
break
continue
2020-10-25 16:05:21 +01:00
frame_rate.update()
# don't lock the queue to check, just try since it should rarely be full
try:
# add to the queue
frame_queue.put(current_frame.value, False)
# close the frame
frame_manager.close(frame_name)
except queue.Full:
# if the queue is full, skip this frame
2020-10-25 16:05:21 +01:00
skipped_eps.update()
2020-10-24 18:36:04 +02:00
frame_manager.delete(frame_name)
2021-02-17 14:23:32 +01:00
2020-10-25 16:05:21 +01:00
class CameraWatchdog(threading.Thread):
2021-02-17 14:23:32 +01:00
def __init__(
self,
camera_name,
config: CameraConfig,
frame_queue,
camera_fps,
skipped_fps,
ffmpeg_pid,
stop_event,
2021-02-17 14:23:32 +01:00
):
2020-10-25 16:05:21 +01:00
threading.Thread.__init__(self)
2020-12-04 13:59:03 +01:00
self.logger = logging.getLogger(f"watchdog.{camera_name}")
2020-11-04 13:28:07 +01:00
self.camera_name = camera_name
2020-10-25 16:05:21 +01:00
self.config = config
self.capture_thread = None
2020-11-29 22:55:53 +01:00
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect")
self.ffmpeg_other_processes: list[dict[str, any]] = []
2020-10-25 16:05:21 +01:00
self.camera_fps = camera_fps
self.skipped_fps = skipped_fps
self.ffmpeg_pid = ffmpeg_pid
2020-10-25 16:05:21 +01:00
self.frame_queue = frame_queue
2020-11-03 15:15:58 +01:00
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
2020-11-29 23:19:59 +01:00
self.stop_event = stop_event
self.sleeptime = self.config.ffmpeg.retry_interval
2020-10-25 16:05:21 +01:00
def run(self):
2020-11-29 22:55:53 +01:00
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
2021-02-17 14:23:32 +01:00
if "detect" in c["roles"]:
2020-11-29 22:55:53 +01:00
continue
2021-02-17 14:23:32 +01:00
logpipe = LogPipe(
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}"
2021-02-17 14:23:32 +01:00
)
self.ffmpeg_other_processes.append(
{
"cmd": c["cmd"],
"roles": c["roles"],
2021-02-17 14:23:32 +01:00
"logpipe": logpipe,
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
}
)
time.sleep(self.sleeptime)
while not self.stop_event.wait(self.sleeptime):
2020-10-25 16:05:21 +01:00
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.camera_fps.value = 0
2021-08-14 21:04:00 +02:00
self.logger.error(
2022-02-06 15:46:41 +01:00
f"Ffmpeg process crashed unexpectedly for {self.camera_name}."
2021-08-14 21:04:00 +02:00
)
self.logger.error(
2021-08-16 14:38:53 +02:00
"The following ffmpeg logs include the last 100 lines prior to exit."
2021-08-14 21:04:00 +02:00
)
self.logpipe.dump()
2020-11-29 22:55:53 +01:00
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.camera_fps.value = 0
2021-02-17 14:23:32 +01:00
self.logger.info(
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
)
2020-11-29 22:55:53 +01:00
self.ffmpeg_detect_process.terminate()
2020-10-25 16:05:21 +01:00
try:
2020-12-04 13:59:03 +01:00
self.logger.info("Waiting for ffmpeg to exit gracefully...")
2020-11-29 22:55:53 +01:00
self.ffmpeg_detect_process.communicate(timeout=30)
2020-10-25 16:05:21 +01:00
except sp.TimeoutExpired:
self.logger.info("FFmpeg did not exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
elif self.camera_fps.value >= (self.config.detect.fps + 10):
self.camera_fps.value = 0
self.logger.info(
f"{self.camera_name} exceeded fps limit. Exiting ffmpeg..."
)
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg did not exit. Force killing...")
2020-11-29 22:55:53 +01:00
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
2021-02-17 14:23:32 +01:00
2020-11-29 22:55:53 +01:00
for p in self.ffmpeg_other_processes:
2021-02-17 14:23:32 +01:00
poll = p["process"].poll()
if self.config.record.enabled and "record" in p["roles"]:
latest_segment_time = self.get_latest_segment_timestamp(
p.get(
"latest_segment_time", datetime.datetime.now().timestamp()
)
)
if datetime.datetime.now().timestamp() > (
latest_segment_time + 120
):
self.logger.error(
f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..."
)
p["process"] = start_or_restart_ffmpeg(
p["cmd"],
self.logger,
p["logpipe"],
ffmpeg_process=p["process"],
)
continue
else:
p["latest_segment_time"] = latest_segment_time
if poll is None:
2020-11-29 22:55:53 +01:00
continue
2021-02-17 14:23:32 +01:00
p["logpipe"].dump()
p["process"] = start_or_restart_ffmpeg(
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
)
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p["process"], self.logger)
p["logpipe"].close()
self.logpipe.close()
2021-02-17 14:23:32 +01:00
2020-11-29 22:55:53 +01:00
def start_ffmpeg_detect(self):
2021-02-17 14:23:32 +01:00
ffmpeg_cmd = [
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
)
2020-11-29 22:55:53 +01:00
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
2021-02-17 14:23:32 +01:00
self.capture_thread = CameraCapture(
self.camera_name,
self.ffmpeg_detect_process,
self.frame_shape,
self.frame_queue,
self.camera_fps,
self.skipped_fps,
self.stop_event,
2021-02-17 14:23:32 +01:00
)
2020-11-01 17:55:11 +01:00
self.capture_thread.start()
2020-10-25 16:05:21 +01:00
def get_latest_segment_timestamp(self, latest_timestamp) -> int:
"""Checks if ffmpeg is still writing recording segments to cache."""
cache_files = sorted(
[
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
)
newest_segment_timestamp = latest_timestamp
for file in cache_files:
if self.camera_name in file:
basename = os.path.splitext(file)[0]
_, date = basename.rsplit("-", maxsplit=1)
ts = datetime.datetime.strptime(date, "%Y%m%d%H%M%S").timestamp()
if ts > newest_segment_timestamp:
newest_segment_timestamp = ts
return newest_segment_timestamp
2021-02-17 14:23:32 +01:00
class CameraCapture(threading.Thread):
def __init__(
self,
camera_name,
ffmpeg_process,
frame_shape,
frame_queue,
fps,
skipped_fps,
stop_event,
):
threading.Thread.__init__(self)
2020-11-04 13:28:07 +01:00
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_queue = frame_queue
self.fps = fps
self.stop_event = stop_event
self.skipped_fps = skipped_fps
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
2021-02-17 14:23:32 +01:00
self.current_frame = mp.Value("d", 0.0)
self.last_frame = 0
def run(self):
2021-02-17 14:23:32 +01:00
capture_frames(
self.ffmpeg_process,
self.camera_name,
self.frame_shape,
self.frame_manager,
self.frame_queue,
self.fps,
self.skipped_fps,
self.current_frame,
self.stop_event,
2021-02-17 14:23:32 +01:00
)
2020-11-03 15:15:58 +01:00
def capture_camera(name, config: CameraConfig, process_info):
2020-11-29 23:19:59 +01:00
stop_event = mp.Event()
2021-02-17 14:23:32 +01:00
2020-11-29 23:19:59 +01:00
def receiveSignal(signalNumber, frame):
stop_event.set()
2021-02-17 14:23:32 +01:00
2020-11-29 23:19:59 +01:00
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
2023-02-02 00:49:18 +01:00
threading.current_thread().name = f"capture:{name}"
setproctitle(f"frigate.capture:{name}")
2021-02-17 14:23:32 +01:00
frame_queue = process_info["frame_queue"]
camera_watchdog = CameraWatchdog(
name,
config,
frame_queue,
process_info["camera_fps"],
process_info["skipped_fps"],
2021-02-17 14:23:32 +01:00
process_info["ffmpeg_pid"],
stop_event,
)
2020-10-25 16:05:21 +01:00
camera_watchdog.start()
camera_watchdog.join()
2021-02-17 14:23:32 +01:00
def track_camera(
name,
config: CameraConfig,
model_config,
labelmap,
2021-02-17 14:23:32 +01:00
detection_queue,
result_connection,
detected_objects_queue,
inter_process_queue,
2021-02-17 14:23:32 +01:00
process_info,
ptz_metrics,
region_grid,
2021-02-17 14:23:32 +01:00
):
2020-11-29 23:19:59 +01:00
stop_event = mp.Event()
2021-02-17 14:23:32 +01:00
2020-11-29 23:19:59 +01:00
def receiveSignal(signalNumber, frame):
stop_event.set()
2021-02-17 14:23:32 +01:00
2020-11-29 23:19:59 +01:00
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
2020-11-04 13:28:07 +01:00
threading.current_thread().name = f"process:{name}"
2021-01-03 20:41:02 +01:00
setproctitle(f"frigate.process:{name}")
listen()
2020-02-16 04:07:54 +01:00
2021-02-17 14:23:32 +01:00
frame_queue = process_info["frame_queue"]
region_grid_queue = process_info["region_grid_queue"]
2021-02-17 14:23:32 +01:00
detection_enabled = process_info["detection_enabled"]
motion_enabled = process_info["motion_enabled"]
improve_contrast_enabled = process_info["improve_contrast_enabled"]
motion_threshold = process_info["motion_threshold"]
motion_contour_area = process_info["motion_contour_area"]
2020-10-25 16:05:21 +01:00
2020-11-03 15:15:58 +01:00
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
2020-02-16 04:07:54 +01:00
motion_detector = ImprovedMotionDetector(
frame_shape,
config.motion,
config.detect.fps,
improve_contrast_enabled,
motion_threshold,
motion_contour_area,
2022-04-16 15:42:44 +02:00
)
2021-02-17 14:23:32 +01:00
object_detector = RemoteObjectDetector(
name, labelmap, detection_queue, result_connection, model_config, stop_event
2021-02-17 14:23:32 +01:00
)
2020-02-16 04:07:54 +01:00
object_tracker = NorfairTracker(config, ptz_metrics)
frame_manager = SharedMemoryFrameManager()
2021-02-17 14:23:32 +01:00
process_frames(
name,
inter_process_queue,
2021-02-17 14:23:32 +01:00
frame_queue,
region_grid_queue,
2021-02-17 14:23:32 +01:00
frame_shape,
model_config,
config.detect,
2021-02-17 14:23:32 +01:00
frame_manager,
motion_detector,
object_detector,
object_tracker,
detected_objects_queue,
process_info,
objects_to_track,
object_filters,
detection_enabled,
motion_enabled,
2021-02-17 14:23:32 +01:00
stop_event,
ptz_metrics,
region_grid,
2021-02-17 14:23:32 +01:00
)
2020-11-04 04:26:39 +01:00
logger.info(f"{name}: exiting subprocess")
2021-02-17 14:23:32 +01:00
def detect(
detect_config: DetectConfig,
object_detector,
frame,
model_config,
region,
objects_to_track,
object_filters,
2021-02-17 14:23:32 +01:00
):
tensor_input = create_tensor_input(frame, model_config, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
2021-02-17 14:23:32 +01:00
size = region[2] - region[0]
x_min = int(max(0, (box[1] * size) + region[0]))
y_min = int(max(0, (box[0] * size) + region[1]))
x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0]))
y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1]))
# ignore objects that were detected outside the frame
if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1):
continue
width = x_max - x_min
height = y_max - y_min
area = width * height
ratio = width / max(1, height)
2021-02-17 14:23:32 +01:00
det = (
d[0],
d[1],
(x_min, y_min, x_max, y_max),
area,
ratio,
2021-02-17 14:23:32 +01:00
region,
)
# apply object filters
if is_object_filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
2021-02-17 14:23:32 +01:00
def process_frames(
camera_name: str,
inter_process_queue: mp.Queue,
frame_queue: mp.Queue,
region_grid_queue: mp.Queue,
2021-02-17 14:23:32 +01:00
frame_shape,
model_config: ModelConfig,
detect_config: DetectConfig,
2021-02-17 14:23:32 +01:00
frame_manager: FrameManager,
motion_detector: MotionDetector,
object_detector: RemoteObjectDetector,
object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue,
process_info: dict,
objects_to_track: list[str],
2021-02-17 14:23:32 +01:00
object_filters,
detection_enabled: mp.Value,
motion_enabled: mp.Value,
2021-02-17 14:23:32 +01:00
stop_event,
ptz_metrics: PTZMetricsTypes,
region_grid,
2021-02-17 14:23:32 +01:00
exit_on_empty: bool = False,
):
fps = process_info["process_fps"]
detection_fps = process_info["detection_fps"]
current_frame_time = process_info["detection_frame"]
next_region_update = get_tomorrow_at_2()
2020-10-25 16:05:21 +01:00
2020-02-16 04:07:54 +01:00
fps_tracker = EventsPerSecond()
fps_tracker.start()
startup_scan = True
stationary_frame_counter = 0
2022-02-05 14:10:00 +01:00
region_min_size = get_min_region_size(model_config)
while not stop_event.is_set():
if (
datetime.datetime.now().astimezone(datetime.timezone.utc)
> next_region_update
):
inter_process_queue.put((REQUEST_REGION_GRID, camera_name))
try:
region_grid = region_grid_queue.get(True, 10)
except queue.Empty:
logger.error(f"Unable to get updated region grid for {camera_name}")
next_region_update = get_tomorrow_at_2()
try:
if exit_on_empty:
frame_time = frame_queue.get(False)
else:
frame_time = frame_queue.get(True, 1)
except queue.Empty:
if exit_on_empty:
logger.info("Exiting track_objects...")
break
continue
current_frame_time.value = frame_time
ptz_metrics["ptz_frame_time"].value = frame_time
2021-02-17 14:23:32 +01:00
frame = frame_manager.get(
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
)
if frame is None:
2020-11-04 04:26:39 +01:00
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
# look for motion if enabled
motion_boxes = motion_detector.detect(frame) if motion_enabled.value else []
2020-02-16 04:07:54 +01:00
regions = []
consolidated_detections = []
# if detection is disabled
if not detection_enabled.value:
object_tracker.match_and_update(frame_time, [])
else:
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
if stationary_frame_counter == detect_config.stationary.interval:
stationary_frame_counter = 0
stationary_object_ids = []
else:
stationary_frame_counter += 1
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if it has exceeded the stationary threshold
if obj["motionless_count"] >= detect_config.stationary.threshold
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes when not calibrating
and not intersects_any(
obj["box"],
[] if motion_detector.is_calibrating() else motion_boxes,
)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
(
# use existing object box for stationary objects
obj["estimate"]
if obj["motionless_count"] < detect_config.stationary.threshold
else obj["box"]
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] not in stationary_object_ids
]
# get consolidated regions for tracked objects
regions = [
get_cluster_region(
frame_shape, region_min_size, candidate, tracked_object_boxes
)
for candidate in get_cluster_candidates(
frame_shape, region_min_size, tracked_object_boxes
2021-02-17 14:23:32 +01:00
)
]
# only add in the motion boxes when not calibrating
if not motion_detector.is_calibrating():
# find motion boxes that are not inside tracked object regions
standalone_motion_boxes = [
b for b in motion_boxes if not inside_any(b, regions)
]
if standalone_motion_boxes:
motion_clusters = get_cluster_candidates(
frame_shape,
region_min_size,
standalone_motion_boxes,
)
motion_regions = [
get_cluster_region_from_grid(
frame_shape,
region_min_size,
candidate,
standalone_motion_boxes,
region_grid,
)
for candidate in motion_clusters
]
regions += motion_regions
# if starting up, get the next startup scan region
if startup_scan:
for region in get_startup_regions(
frame_shape, region_min_size, region_grid
):
regions.append(region)
startup_scan = False
2021-02-17 14:23:32 +01:00
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["ratio"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
detect_config,
object_detector,
frame,
model_config,
region,
objects_to_track,
object_filters,
)
)
#########
# merge objects
#########
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
detections = selected_objects
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = get_consolidated_object_detections(
detected_object_groups
)
tracked_detections = [
d
for d in consolidated_detections
if d[0] not in ALL_ATTRIBUTE_LABELS
]
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, tracked_detections)
# else, just update the frame times for the stationary objects
else:
object_tracker.update_frame_times(frame_time)
2020-02-16 04:07:54 +01:00
# group the attribute detections based on what label they apply to
attribute_detections = {}
for label, attribute_labels in ATTRIBUTE_LABEL_MAP.items():
attribute_detections[label] = [
d for d in consolidated_detections if d[0] in attribute_labels
]
# build detections and add attributes
detections = {}
for obj in object_tracker.tracked_objects.values():
attributes = []
# if the objects label has associated attribute detections
if obj["label"] in attribute_detections.keys():
# add them to attributes if they intersect
for attribute_detection in attribute_detections[obj["label"]]:
if box_inside(obj["box"], (attribute_detection[2])):
attributes.append(
{
"label": attribute_detection[0],
"score": attribute_detection[1],
"box": attribute_detection[2],
}
)
detections[obj["id"]] = {**obj, "attributes": attributes}
# debug object tracking
2023-05-31 16:12:43 +02:00
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
object_tracker.debug_draw(bgr_frame, frame_time)
cv2.imwrite(
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
)
# debug
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
2023-05-31 16:12:43 +02:00
for m_box in motion_boxes:
cv2.rectangle(
bgr_frame,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
for b in tracked_object_boxes:
cv2.rectangle(
bgr_frame,
(b[0], b[1]),
(b[2], b[3]),
(255, 0, 0),
2,
)
for obj in object_tracker.tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = model_config.colormap[obj["label"]]
else:
thickness = 1
color = (255, 0, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
bgr_frame,
box[0],
box[1],
box[2],
box[3],
obj["label"],
obj["id"],
thickness=thickness,
color=color,
)
for region in regions:
cv2.rectangle(
bgr_frame,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
cv2.imwrite(
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
bgr_frame,
)
2020-10-24 18:36:04 +02:00
# add to the queue if not full
2021-02-17 14:23:32 +01:00
if detected_objects_queue.full():
2021-01-16 03:52:59 +01:00
frame_manager.delete(f"{camera_name}{frame_time}")
continue
2020-10-24 18:36:04 +02:00
else:
2021-01-16 03:52:59 +01:00
fps_tracker.update()
fps.value = fps_tracker.eps()
2021-02-17 14:23:32 +01:00
detected_objects_queue.put(
(
camera_name,
frame_time,
detections,
2021-02-17 14:23:32 +01:00
motion_boxes,
regions,
)
)
2021-01-16 03:52:59 +01:00
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")