blakeblackshear.frigate/frigate/edgetpu.py

265 lines
8.3 KiB
Python
Raw Normal View History

2020-02-16 04:07:54 +01:00
import datetime
2020-11-04 13:28:07 +01:00
import logging
2020-02-09 14:39:24 +01:00
import multiprocessing as mp
2020-11-04 13:28:07 +01:00
import os
import queue
2020-11-29 23:19:59 +01:00
import signal
2021-02-17 14:23:32 +01:00
import threading
from abc import ABC, abstractmethod
from typing import Dict
2020-11-04 13:28:07 +01:00
2020-02-09 14:39:24 +01:00
import numpy as np
import tflite_runtime.interpreter as tflite
2021-02-17 14:23:32 +01:00
from setproctitle import setproctitle
2020-02-09 14:39:24 +01:00
from tflite_runtime.interpreter import load_delegate
2020-11-04 13:28:07 +01:00
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen, load_labels
2020-02-09 14:39:24 +01:00
2020-11-04 04:26:39 +01:00
logger = logging.getLogger(__name__)
2021-02-17 14:23:32 +01:00
class ObjectDetector(ABC):
@abstractmethod
2021-02-17 14:23:32 +01:00
def detect(self, tensor_input, threshold=0.4):
pass
2021-02-17 14:23:32 +01:00
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, model_path=None, num_threads=3, labels=None):
2020-09-13 14:46:38 +02:00
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
device_config = {"device": "usb"}
if not tf_device is None:
device_config = {"device": tf_device}
2020-02-09 14:39:24 +01:00
edge_tpu_delegate = None
2021-02-17 14:23:32 +01:00
if tf_device != "cpu":
try:
2020-12-04 13:59:03 +01:00
logger.info(f"Attempting to load TPU as {device_config['device']}")
2021-02-17 14:23:32 +01:00
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
2020-12-04 13:59:03 +01:00
logger.info("TPU found")
2021-01-16 05:43:42 +01:00
self.interpreter = tflite.Interpreter(
model_path=model_path or "/edgetpu_model.tflite",
2021-02-17 14:23:32 +01:00
experimental_delegates=[edge_tpu_delegate],
)
except ValueError:
2021-08-16 14:38:53 +02:00
logger.error(
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
)
2021-01-16 05:43:42 +01:00
raise
2020-02-09 14:39:24 +01:00
else:
2021-08-16 14:38:53 +02:00
logger.warning(
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
)
2020-02-09 14:39:24 +01:00
self.interpreter = tflite.Interpreter(
model_path=model_path or "/cpu_model.tflite", num_threads=num_threads
2021-02-17 14:23:32 +01:00
)
2020-02-09 14:39:24 +01:00
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
2021-02-17 14:23:32 +01:00
def detect(self, tensor_input, threshold=0.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
2021-02-17 14:23:32 +01:00
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
2020-09-13 14:46:38 +02:00
self.fps.update()
return detections
2020-02-09 14:39:24 +01:00
def detect_raw(self, tensor_input):
2021-02-17 14:23:32 +01:00
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
2020-02-09 14:39:24 +01:00
self.interpreter.invoke()
2021-08-07 22:34:55 +02:00
2021-08-15 16:14:13 +02:00
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
count = int(
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
)
2020-02-09 14:39:24 +01:00
2021-02-17 14:23:32 +01:00
detections = np.zeros((20, 6), np.float32)
2021-08-15 16:14:13 +02:00
for i in range(count):
if scores[i] < 0.4 or i == 20:
2021-08-07 22:34:55 +02:00
break
2021-02-17 14:23:32 +01:00
detections[i] = [
2021-08-15 16:14:13 +02:00
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
2021-02-17 14:23:32 +01:00
]
2020-02-09 14:39:24 +01:00
return detections
2021-02-17 14:23:32 +01:00
def run_detector(
name: str,
detection_queue: mp.Queue,
out_events: Dict[str, mp.Event],
avg_speed,
start,
model_path,
2021-02-17 14:23:32 +01:00
model_shape,
tf_device,
num_threads,
):
2020-11-04 13:28:07 +01:00
threading.current_thread().name = f"detector:{name}"
2020-12-04 13:59:03 +01:00
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
2021-01-03 20:41:02 +01:00
setproctitle(f"frigate.detector.{name}")
listen()
2020-11-29 23:19:59 +01:00
stop_event = mp.Event()
2021-02-17 14:23:32 +01:00
2020-11-29 23:19:59 +01:00
def receiveSignal(signalNumber, frame):
stop_event.set()
2021-02-17 14:23:32 +01:00
2020-11-29 23:19:59 +01:00
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(
tf_device=tf_device, model_path=model_path, num_threads=num_threads
)
2020-02-09 14:39:24 +01:00
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
2021-02-17 14:23:32 +01:00
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {"shm": out_shm, "np": out_np}
while not stop_event.is_set():
2020-11-29 23:19:59 +01:00
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
2021-02-17 14:23:32 +01:00
input_frame = frame_manager.get(
connection_id, (1, model_shape[0], model_shape[1], 3)
)
2020-02-09 14:39:24 +01:00
if input_frame is None:
continue
2020-02-09 14:39:24 +01:00
# detect and send the output
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
2021-02-17 14:23:32 +01:00
duration = datetime.datetime.now().timestamp() - start.value
outputs[connection_id]["np"][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
2021-02-17 14:23:32 +01:00
avg_speed.value = (avg_speed.value * 9 + duration) / 10
class EdgeTPUProcess:
def __init__(
self,
name,
detection_queue,
out_events,
model_path,
2021-02-17 14:23:32 +01:00
model_shape,
tf_device=None,
num_threads=3,
):
2020-11-04 13:28:07 +01:00
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
2021-02-17 14:23:32 +01:00
self.avg_inference_speed = mp.Value("d", 0.01)
self.detection_start = mp.Value("d", 0.0)
self.detect_process = None
self.model_path = model_path
self.model_shape = model_shape
self.tf_device = tf_device
2020-12-19 17:04:13 +01:00
self.num_threads = num_threads
self.start_or_restart()
2021-02-17 14:23:32 +01:00
def stop(self):
self.detect_process.terminate()
2020-11-04 04:26:39 +01:00
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
2020-11-04 04:26:39 +01:00
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
2020-02-09 14:39:24 +01:00
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
2021-02-17 14:23:32 +01:00
self.detect_process = mp.Process(
target=run_detector,
name=f"detector:{self.name}",
args=(
self.name,
self.detection_queue,
self.out_events,
self.avg_inference_speed,
self.detection_start,
self.model_path,
2021-02-17 14:23:32 +01:00
self.model_shape,
self.tf_device,
self.num_threads,
),
)
2020-02-09 14:39:24 +01:00
self.detect_process.daemon = True
self.detect_process.start()
2021-02-17 14:23:32 +01:00
class RemoteObjectDetector:
def __init__(self, name, labels, detection_queue, event, model_shape):
self.labels = labels
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
2020-10-11 16:40:20 +02:00
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
2021-02-17 14:23:32 +01:00
self.np_shm = np.ndarray(
(1, model_shape[0], model_shape[1], 3), dtype=np.uint8, buffer=self.shm.buf
)
self.out_shm = mp.shared_memory.SharedMemory(
name=f"out-{self.name}", create=False
)
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=0.4):
2020-02-09 14:39:24 +01:00
detections = []
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
result = self.event.wait(timeout=10.0)
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
if d[1] < threshold:
break
2021-02-17 14:23:32 +01:00
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
self.fps.update()
return detections
2021-02-17 14:23:32 +01:00
def cleanup(self):
self.shm.unlink()
2020-11-04 13:28:07 +01:00
self.out_shm.unlink()