2019-03-30 02:49:27 +01:00
|
|
|
import os
|
2019-02-26 03:27:02 +01:00
|
|
|
import time
|
|
|
|
import datetime
|
|
|
|
import cv2
|
2019-12-21 14:15:39 +01:00
|
|
|
import queue
|
2019-02-27 03:29:52 +01:00
|
|
|
import threading
|
2019-03-30 02:49:27 +01:00
|
|
|
import ctypes
|
|
|
|
import multiprocessing as mp
|
2019-06-02 14:29:50 +02:00
|
|
|
import subprocess as sp
|
2019-05-10 13:19:39 +02:00
|
|
|
import numpy as np
|
2020-02-16 04:07:54 +01:00
|
|
|
import hashlib
|
|
|
|
import pyarrow.plasma as plasma
|
|
|
|
import SharedArray as sa
|
2020-01-11 20:22:56 +01:00
|
|
|
import copy
|
2019-12-31 21:59:22 +01:00
|
|
|
import itertools
|
2020-01-18 16:07:02 +01:00
|
|
|
import json
|
2019-12-14 22:18:21 +01:00
|
|
|
from collections import defaultdict
|
2020-02-16 15:49:43 +01:00
|
|
|
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
2020-02-16 04:07:54 +01:00
|
|
|
from frigate.objects import ObjectTracker
|
|
|
|
from frigate.edgetpu import RemoteObjectDetector
|
|
|
|
from frigate.motion import MotionDetector
|
2019-02-26 03:27:02 +01:00
|
|
|
|
2019-12-08 14:03:58 +01:00
|
|
|
def get_frame_shape(source):
|
2020-01-18 16:07:02 +01:00
|
|
|
ffprobe_cmd = " ".join([
|
|
|
|
'ffprobe',
|
|
|
|
'-v',
|
|
|
|
'panic',
|
|
|
|
'-show_error',
|
|
|
|
'-show_streams',
|
|
|
|
'-of',
|
|
|
|
'json',
|
|
|
|
'"'+source+'"'
|
|
|
|
])
|
|
|
|
print(ffprobe_cmd)
|
|
|
|
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
|
|
|
(output, err) = p.communicate()
|
|
|
|
p_status = p.wait()
|
|
|
|
info = json.loads(output)
|
|
|
|
print(info)
|
|
|
|
|
|
|
|
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
|
|
|
|
|
2020-01-19 03:24:44 +01:00
|
|
|
if video_info['height'] != 0 and video_info['width'] != 0:
|
|
|
|
return (video_info['height'], video_info['width'], 3)
|
|
|
|
|
|
|
|
# fallback to using opencv if ffprobe didnt succeed
|
|
|
|
video = cv2.VideoCapture(source)
|
|
|
|
ret, frame = video.read()
|
|
|
|
frame_shape = frame.shape
|
|
|
|
video.release()
|
|
|
|
return frame_shape
|
2019-03-30 02:49:27 +01:00
|
|
|
|
2019-12-08 14:03:58 +01:00
|
|
|
def get_ffmpeg_input(ffmpeg_input):
|
|
|
|
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
|
|
|
return ffmpeg_input.format(**frigate_vars)
|
2019-03-30 02:49:27 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def filtered(obj, objects_to_track, object_filters, mask):
|
|
|
|
object_name = obj[0]
|
|
|
|
|
|
|
|
if not object_name in objects_to_track:
|
|
|
|
return True
|
|
|
|
|
|
|
|
if object_name in object_filters:
|
|
|
|
obj_settings = object_filters[object_name]
|
|
|
|
|
|
|
|
# if the min area is larger than the
|
|
|
|
# detected object, don't add it to detected objects
|
|
|
|
if obj_settings.get('min_area',-1) > obj[3]:
|
|
|
|
return True
|
|
|
|
|
|
|
|
# if the detected object is larger than the
|
|
|
|
# max area, don't add it to detected objects
|
|
|
|
if obj_settings.get('max_area', 24000000) < obj[3]:
|
|
|
|
return True
|
|
|
|
|
|
|
|
# if the score is lower than the threshold, skip
|
|
|
|
if obj_settings.get('threshold', 0) > obj[1]:
|
|
|
|
return True
|
|
|
|
|
|
|
|
# compute the coordinates of the object and make sure
|
|
|
|
# the location isnt outside the bounds of the image (can happen from rounding)
|
|
|
|
y_location = min(int(obj[2][3]), len(mask)-1)
|
|
|
|
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
|
|
|
|
|
|
|
# if the object is in a masked location, don't add it to detected objects
|
|
|
|
if mask[y_location][x_location] == [0]:
|
|
|
|
return True
|
|
|
|
|
|
|
|
return False
|
2019-12-15 14:25:40 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
def create_tensor_input(frame, region):
|
|
|
|
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
|
2019-03-30 02:49:27 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
# Resize to 300x300 if needed
|
|
|
|
if cropped_frame.shape != (300, 300, 3):
|
|
|
|
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
|
|
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
|
|
|
return np.expand_dims(cropped_frame, axis=0)
|
|
|
|
|
2020-02-27 02:02:12 +01:00
|
|
|
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
|
|
|
if not ffmpeg_process is None:
|
|
|
|
print("Terminating the existing ffmpeg process...")
|
|
|
|
ffmpeg_process.terminate()
|
|
|
|
try:
|
|
|
|
print("Waiting for ffmpeg to exit gracefully...")
|
|
|
|
ffmpeg_process.wait(timeout=30)
|
|
|
|
except sp.TimeoutExpired:
|
|
|
|
print("FFmpeg didnt exit. Force killing...")
|
|
|
|
ffmpeg_process.kill()
|
|
|
|
ffmpeg_process.wait()
|
|
|
|
|
|
|
|
print("Creating ffmpeg process...")
|
|
|
|
print(" ".join(ffmpeg_cmd))
|
|
|
|
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
|
|
|
|
|
2020-03-01 14:16:49 +01:00
|
|
|
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
|
2020-02-16 04:07:54 +01:00
|
|
|
print(f"Starting process for {name}: {os.getpid()}")
|
|
|
|
|
|
|
|
# Merge the ffmpeg config with the global config
|
|
|
|
ffmpeg = config.get('ffmpeg', {})
|
|
|
|
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
|
|
|
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
|
|
|
|
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
|
|
|
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
|
|
|
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
2020-02-27 02:02:12 +01:00
|
|
|
ffmpeg_cmd = (['ffmpeg'] +
|
|
|
|
ffmpeg_global_args +
|
|
|
|
ffmpeg_hwaccel_args +
|
|
|
|
ffmpeg_input_args +
|
|
|
|
['-i', ffmpeg_input] +
|
|
|
|
ffmpeg_output_args +
|
|
|
|
['pipe:'])
|
2020-02-16 04:07:54 +01:00
|
|
|
|
|
|
|
# Merge the tracked object config with the global config
|
|
|
|
camera_objects_config = config.get('objects', {})
|
|
|
|
# combine tracked objects lists
|
|
|
|
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
|
|
|
# merge object filters
|
|
|
|
global_object_filters = global_objects_config.get('filters', {})
|
|
|
|
camera_object_filters = camera_objects_config.get('filters', {})
|
|
|
|
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
|
|
|
object_filters = {}
|
|
|
|
for obj in objects_with_config:
|
|
|
|
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
|
|
|
|
2020-02-18 12:55:06 +01:00
|
|
|
expected_fps = config['fps']
|
2020-02-16 04:07:54 +01:00
|
|
|
take_frame = config.get('take_frame', 1)
|
|
|
|
|
2020-02-23 14:56:14 +01:00
|
|
|
if 'width' in config and 'height' in config:
|
|
|
|
frame_shape = (config['height'], config['width'], 3)
|
|
|
|
else:
|
|
|
|
frame_shape = get_frame_shape(ffmpeg_input)
|
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
|
|
|
|
|
|
try:
|
|
|
|
sa.delete(name)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
|
|
|
|
|
|
|
|
# load in the mask for object detection
|
|
|
|
if 'mask' in config:
|
|
|
|
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
|
|
|
|
else:
|
|
|
|
mask = None
|
|
|
|
|
|
|
|
if mask is None:
|
|
|
|
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
|
|
|
|
mask[:] = 255
|
|
|
|
|
|
|
|
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
2020-03-01 14:16:49 +01:00
|
|
|
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
2020-02-16 04:07:54 +01:00
|
|
|
|
|
|
|
object_tracker = ObjectTracker(10)
|
|
|
|
|
2020-02-27 02:02:12 +01:00
|
|
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
2019-03-30 02:49:27 +01:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
plasma_client = plasma.connect("/tmp/plasma")
|
|
|
|
frame_num = 0
|
2020-02-22 14:36:25 +01:00
|
|
|
avg_wait = 0.0
|
2020-02-16 04:07:54 +01:00
|
|
|
fps_tracker = EventsPerSecond()
|
2020-02-16 15:49:14 +01:00
|
|
|
skipped_fps_tracker = EventsPerSecond()
|
2020-02-16 04:07:54 +01:00
|
|
|
fps_tracker.start()
|
2020-02-16 15:49:14 +01:00
|
|
|
skipped_fps_tracker.start()
|
2020-02-22 03:44:53 +01:00
|
|
|
object_detector.fps.start()
|
2020-02-16 04:07:54 +01:00
|
|
|
while True:
|
2020-02-22 14:36:25 +01:00
|
|
|
start = datetime.datetime.now().timestamp()
|
2020-02-16 04:07:54 +01:00
|
|
|
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
2020-02-22 14:36:25 +01:00
|
|
|
duration = datetime.datetime.now().timestamp()-start
|
|
|
|
avg_wait = (avg_wait*99+duration)/100
|
2020-02-16 04:07:54 +01:00
|
|
|
|
|
|
|
if not frame_bytes:
|
2020-02-26 03:37:12 +01:00
|
|
|
rc = ffmpeg_process.poll()
|
|
|
|
if rc is not None:
|
|
|
|
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
|
2020-02-27 02:02:12 +01:00
|
|
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
|
2020-03-01 14:16:49 +01:00
|
|
|
time.sleep(10)
|
2020-02-26 03:37:12 +01:00
|
|
|
else:
|
|
|
|
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
|
2020-02-27 02:02:12 +01:00
|
|
|
continue
|
2020-02-16 04:07:54 +01:00
|
|
|
|
|
|
|
# limit frame rate
|
|
|
|
frame_num += 1
|
|
|
|
if (frame_num % take_frame) != 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
fps_tracker.update()
|
|
|
|
fps.value = fps_tracker.eps()
|
2020-02-22 03:44:53 +01:00
|
|
|
detection_fps.value = object_detector.fps.eps()
|
2020-02-16 04:07:54 +01:00
|
|
|
|
|
|
|
frame_time = datetime.datetime.now().timestamp()
|
|
|
|
|
|
|
|
# Store frame in numpy array
|
|
|
|
frame[:] = (np
|
|
|
|
.frombuffer(frame_bytes, np.uint8)
|
|
|
|
.reshape(frame_shape))
|
|
|
|
|
|
|
|
# look for motion
|
|
|
|
motion_boxes = motion_detector.detect(frame)
|
|
|
|
|
2020-02-22 14:36:25 +01:00
|
|
|
# skip object detection if we are below the min_fps and wait time is less than half the average
|
|
|
|
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
|
2020-02-16 15:49:14 +01:00
|
|
|
skipped_fps_tracker.update()
|
|
|
|
skipped_fps.value = skipped_fps_tracker.eps()
|
|
|
|
continue
|
|
|
|
|
|
|
|
skipped_fps.value = skipped_fps_tracker.eps()
|
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
tracked_objects = object_tracker.tracked_objects.values()
|
|
|
|
|
|
|
|
# merge areas of motion that intersect with a known tracked object into a single area to look at
|
|
|
|
areas_of_interest = []
|
|
|
|
used_motion_boxes = []
|
|
|
|
for obj in tracked_objects:
|
|
|
|
x_min, y_min, x_max, y_max = obj['box']
|
|
|
|
for m_index, motion_box in enumerate(motion_boxes):
|
|
|
|
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
|
|
|
|
used_motion_boxes.append(m_index)
|
|
|
|
x_min = min(obj['box'][0], motion_box[0])
|
|
|
|
y_min = min(obj['box'][1], motion_box[1])
|
|
|
|
x_max = max(obj['box'][2], motion_box[2])
|
|
|
|
y_max = max(obj['box'][3], motion_box[3])
|
|
|
|
areas_of_interest.append((x_min, y_min, x_max, y_max))
|
|
|
|
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
|
2019-07-15 13:08:39 +02:00
|
|
|
|
2020-02-16 04:07:54 +01:00
|
|
|
# compute motion regions
|
|
|
|
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
|
|
|
|
for i in unused_motion_boxes]
|
|
|
|
|
|
|
|
# compute tracked object regions
|
|
|
|
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
|
|
|
for a in areas_of_interest]
|
|
|
|
|
|
|
|
# merge regions with high IOU
|
|
|
|
merged_regions = motion_regions+object_regions
|
|
|
|
while True:
|
|
|
|
max_iou = 0.0
|
|
|
|
max_indices = None
|
|
|
|
region_indices = range(len(merged_regions))
|
|
|
|
for a, b in itertools.combinations(region_indices, 2):
|
|
|
|
iou = intersection_over_union(merged_regions[a], merged_regions[b])
|
|
|
|
if iou > max_iou:
|
|
|
|
max_iou = iou
|
|
|
|
max_indices = (a, b)
|
|
|
|
if max_iou > 0.1:
|
|
|
|
a = merged_regions[max_indices[0]]
|
|
|
|
b = merged_regions[max_indices[1]]
|
|
|
|
merged_regions.append(calculate_region(frame_shape,
|
|
|
|
min(a[0], b[0]),
|
|
|
|
min(a[1], b[1]),
|
|
|
|
max(a[2], b[2]),
|
|
|
|
max(a[3], b[3]),
|
|
|
|
1
|
|
|
|
))
|
|
|
|
del merged_regions[max(max_indices[0], max_indices[1])]
|
|
|
|
del merged_regions[min(max_indices[0], max_indices[1])]
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
|
|
|
|
# resize regions and detect
|
|
|
|
detections = []
|
|
|
|
for region in merged_regions:
|
|
|
|
|
|
|
|
tensor_input = create_tensor_input(frame, region)
|
|
|
|
|
|
|
|
region_detections = object_detector.detect(tensor_input)
|
|
|
|
|
|
|
|
for d in region_detections:
|
|
|
|
box = d[2]
|
|
|
|
size = region[2]-region[0]
|
|
|
|
x_min = int((box[1] * size) + region[0])
|
|
|
|
y_min = int((box[0] * size) + region[1])
|
|
|
|
x_max = int((box[3] * size) + region[0])
|
|
|
|
y_max = int((box[2] * size) + region[1])
|
|
|
|
det = (d[0],
|
|
|
|
d[1],
|
|
|
|
(x_min, y_min, x_max, y_max),
|
|
|
|
(x_max-x_min)*(y_max-y_min),
|
|
|
|
region)
|
|
|
|
if filtered(det, objects_to_track, object_filters, mask):
|
|
|
|
continue
|
|
|
|
detections.append(det)
|
|
|
|
|
|
|
|
#########
|
|
|
|
# merge objects, check for clipped objects and look again up to N times
|
|
|
|
#########
|
|
|
|
refining = True
|
|
|
|
refine_count = 0
|
|
|
|
while refining and refine_count < 4:
|
|
|
|
refining = False
|
|
|
|
|
|
|
|
# group by name
|
|
|
|
detected_object_groups = defaultdict(lambda: [])
|
|
|
|
for detection in detections:
|
|
|
|
detected_object_groups[detection[0]].append(detection)
|
|
|
|
|
|
|
|
selected_objects = []
|
|
|
|
for group in detected_object_groups.values():
|
|
|
|
|
|
|
|
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
|
|
|
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
|
|
|
|
for o in group]
|
|
|
|
confidences = [o[1] for o in group]
|
|
|
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
|
|
|
|
|
|
|
for index in idxs:
|
|
|
|
obj = group[index[0]]
|
|
|
|
if clipped(obj, frame_shape): #obj['clipped']:
|
|
|
|
box = obj[2]
|
|
|
|
# calculate a new region that will hopefully get the entire object
|
|
|
|
region = calculate_region(frame_shape,
|
|
|
|
box[0], box[1],
|
|
|
|
box[2], box[3])
|
|
|
|
|
|
|
|
tensor_input = create_tensor_input(frame, region)
|
|
|
|
# run detection on new region
|
|
|
|
refined_detections = object_detector.detect(tensor_input)
|
|
|
|
for d in refined_detections:
|
|
|
|
box = d[2]
|
|
|
|
size = region[2]-region[0]
|
|
|
|
x_min = int((box[1] * size) + region[0])
|
|
|
|
y_min = int((box[0] * size) + region[1])
|
|
|
|
x_max = int((box[3] * size) + region[0])
|
|
|
|
y_max = int((box[2] * size) + region[1])
|
|
|
|
det = (d[0],
|
|
|
|
d[1],
|
|
|
|
(x_min, y_min, x_max, y_max),
|
|
|
|
(x_max-x_min)*(y_max-y_min),
|
|
|
|
region)
|
|
|
|
if filtered(det, objects_to_track, object_filters, mask):
|
|
|
|
continue
|
|
|
|
selected_objects.append(det)
|
|
|
|
|
|
|
|
refining = True
|
|
|
|
else:
|
|
|
|
selected_objects.append(obj)
|
|
|
|
|
|
|
|
# set the detections list to only include top, complete objects
|
|
|
|
# and new detections
|
|
|
|
detections = selected_objects
|
|
|
|
|
|
|
|
if refining:
|
|
|
|
refine_count += 1
|
|
|
|
|
|
|
|
# now that we have refined our detections, we need to track objects
|
|
|
|
object_tracker.match_and_update(frame_time, detections)
|
|
|
|
|
|
|
|
# put the frame in the plasma store
|
|
|
|
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
|
|
|
|
plasma_client.put(frame, plasma.ObjectID(object_id))
|
|
|
|
# add to the queue
|
|
|
|
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
2020-02-26 03:37:12 +01:00
|
|
|
|
|
|
|
print(f"{name}: exiting subprocess")
|