blakeblackshear.frigate/detect_objects.py

277 lines
11 KiB
Python
Raw Normal View History

2019-01-26 15:02:59 +01:00
import os
import cv2
2019-02-09 15:51:11 +01:00
import imutils
2019-01-26 15:02:59 +01:00
import time
import datetime
import ctypes
import logging
import multiprocessing as mp
import threading
2019-02-10 19:00:52 +01:00
import json
2019-01-26 15:02:59 +01:00
from contextlib import closing
import numpy as np
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response, send_file
2019-02-10 19:00:52 +01:00
import paho.mqtt.client as mqtt
2019-01-26 15:02:59 +01:00
2019-02-26 03:27:02 +01:00
from frigate.util import tonumpyarray
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
2019-02-26 03:27:02 +01:00
from frigate.motion import detect_motion
from frigate.video import fetch_frames, FrameTracker
from frigate.object_detection import prep_for_detection, detect_objects
2019-01-26 15:02:59 +01:00
2019-02-26 03:27:02 +01:00
RTSP_URL = os.getenv('RTSP_URL')
2019-01-26 15:02:59 +01:00
2019-02-10 19:00:52 +01:00
MQTT_HOST = os.getenv('MQTT_HOST')
MQTT_USER = os.getenv('MQTT_USER')
MQTT_PASS = os.getenv('MQTT_PASS')
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
2019-02-10 19:00:52 +01:00
2019-02-10 03:38:11 +01:00
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
# REGIONS = "400,350,250,50"
REGIONS = os.getenv('REGIONS')
2019-02-24 15:41:03 +01:00
DEBUG = (os.getenv('DEBUG') == '1')
2019-01-26 15:02:59 +01:00
def main():
2019-02-26 03:27:02 +01:00
DETECTED_OBJECTS = []
recent_motion_frames = {}
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
region_parts = region_string.split(',')
2019-02-25 13:48:01 +01:00
region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
region_mask = np.where(region_mask_image==[0])
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
2019-02-10 03:38:11 +01:00
'y_offset': int(region_parts[2]),
2019-02-25 13:48:01 +01:00
'min_person_area': int(region_parts[3]),
'min_object_size': int(region_parts[4]),
'mask': region_mask,
# Event for motion detection signaling
'motion_detected': mp.Event(),
# create shared array for storing 10 detected objects
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
'output_array': mp.Array(ctypes.c_double, 6*10)
})
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
2019-01-26 15:02:59 +01:00
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
2019-02-26 03:27:02 +01:00
# Lock to control access to the frame
frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
frame_ready = mp.Condition()
# Condition for notifying that motion status changed globally
motion_changed = mp.Condition()
# Condition for notifying that objects were parsed
objects_parsed = mp.Condition()
# Queue for detected objects
object_queue = mp.Queue()
# array for prepped frame with shape (1, 300, 300, 3)
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
# shared value for storing the prepped_frame_time
prepped_frame_time = mp.Value('d', 0.0)
# Condition for notifying that a new prepped frame is ready
prepped_frame_ready = mp.Condition()
# Lock to control access to the prepped frame
prepped_frame_lock = mp.Lock()
# array for prepped frame box [x1, y1, x2, y2]
prepped_frame_box = mp.Array(ctypes.c_uint16, 4)
2019-02-26 03:27:02 +01:00
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
2019-01-26 15:02:59 +01:00
2019-02-26 03:27:02 +01:00
# start the process to capture frames from the RTSP stream and store in a shared array
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
2019-02-26 03:27:02 +01:00
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
2019-01-26 15:02:59 +01:00
capture_process.daemon = True
2019-02-26 03:27:02 +01:00
# for each region, start a separate process for motion detection and object detection
detection_prep_processes = []
motion_processes = []
for region in regions:
2019-03-18 13:48:04 +01:00
# possibly try putting these on threads and putting prepped
# frames in a queue
detection_prep_process = mp.Process(target=prep_for_detection, args=(shared_arr,
shared_frame_time,
frame_lock, frame_ready,
region['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_array, prepped_frame_time, prepped_frame_ready,
prepped_frame_lock, prepped_frame_box))
detection_prep_process.daemon = True
detection_prep_processes.append(detection_prep_process)
2019-01-26 15:02:59 +01:00
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
frame_lock, frame_ready,
region['motion_detected'],
motion_changed,
2019-02-09 15:51:11 +01:00
frame_shape,
2019-02-10 03:38:11 +01:00
region['size'], region['x_offset'], region['y_offset'],
region['min_object_size'], region['mask'],
2019-02-24 15:41:03 +01:00
DEBUG))
2019-02-09 15:51:11 +01:00
motion_process.daemon = True
motion_processes.append(motion_process)
2019-03-18 13:48:04 +01:00
# create a process for object detection
detection_process = mp.Process(target=detect_objects, args=(
prepped_frame_array, prepped_frame_time,
prepped_frame_lock, prepped_frame_ready,
prepped_frame_box, object_queue, DEBUG
))
detection_process.daemon = True
# start a thread to store recent motion frames for processing
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
frame_tracker.start()
# start a thread to store the highest scoring recent person frame
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
best_person_frame.start()
2019-02-26 03:27:02 +01:00
# start a thread to parse objects from the queue
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
object_parser.start()
2019-02-26 03:27:02 +01:00
# start a thread to expire objects from the detected objects list
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
object_cleaner.start()
2019-02-26 03:27:02 +01:00
# connect to mqtt and setup last will
2019-02-28 13:30:34 +01:00
def on_connect(client, userdata, flags, rc):
print("On connect called")
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client()
2019-02-28 13:30:34 +01:00
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, 1883, 60)
client.loop_start()
2019-02-26 03:27:02 +01:00
# start a thread to publish object scores (currently only person)
2019-02-28 13:49:27 +01:00
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
2019-02-10 19:00:52 +01:00
mqtt_publisher.start()
2019-02-26 03:27:02 +01:00
# start thread to publish motion status
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
[region['motion_detected'] for region in regions])
mqtt_motion_publisher.start()
2019-02-26 03:27:02 +01:00
# start the process of capturing frames
2019-01-26 15:02:59 +01:00
capture_process.start()
print("capture_process pid ", capture_process.pid)
2019-02-26 03:27:02 +01:00
2019-03-18 13:48:04 +01:00
# start the object detection prep processes
for detection_prep_process in detection_prep_processes:
detection_prep_process.start()
print("detection_prep_process pid ", detection_prep_process.pid)
2019-02-26 03:27:02 +01:00
2019-03-18 13:48:04 +01:00
detection_process.start()
print("detection_process pid ", detection_process.pid)
2019-02-26 03:27:02 +01:00
# start the motion detection processes
# for motion_process in motion_processes:
# motion_process.start()
# print("motion_process pid ", motion_process.pid)
# TEMP: short circuit the motion detection
for region in regions:
region['motion_detected'].set()
with motion_changed:
motion_changed.notify_all()
2019-02-09 15:51:11 +01:00
2019-02-26 03:27:02 +01:00
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/best_person.jpg')
def best_person():
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# lock and make a copy of the current frame
with frame_lock:
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
for region in regions:
color = (255,255,255)
if region['motion_detected'].is_set():
color = (0,255,0)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
2019-01-26 15:02:59 +01:00
capture_process.join()
for detection_prep_process in detection_prep_processes:
detection_prep_process.join()
2019-02-09 15:51:11 +01:00
for motion_process in motion_processes:
motion_process.join()
2019-03-18 13:48:04 +01:00
detection_process.join()
frame_tracker.join()
best_person_frame.join()
object_parser.join()
object_cleaner.join()
2019-02-10 19:00:52 +01:00
mqtt_publisher.join()
2019-01-26 15:02:59 +01:00
if __name__ == '__main__':
main()